Determinants of Behavioral Intention to Use Generative AI: The Role of Trust, Personal Innovativeness, and UTAUT II Factors
-
https://doi.org/10.14419/44tk8615
Received date: July 3, 2025
Accepted date: August 6, 2025
Published date: August 12, 2025
-
Generative AI; UTAUT; personal innovativeness; trust; education -
Abstract
This study examines the key determinants influencing Indonesian university students' behavioral intention to use generative AI, focusing on the roles of trust, personal innovativeness, and factors from the Unified Theory of Acceptance and Use of Technology II (UTAUT II). The study employed a survey research method, collecting 480 valid responses. Data analysis was conducted using descriptive statistics and PLS-SEM to identify significant predictors of generative AI adoption. The findings indicate that performance expectancy, facilitating conditions, hedonic motivation, personal innovativeness, price value, and trust significantly influence students' intention to adopt generative AI, while effort expectancy and social influence were found to be insignificant. The study contributes to theory by extending UTAUT II with trust and personal innovativeness in the context of generative AI adoption. Practically, it offers insights for policymakers to enhance the adoption of AI by focusing on factors that matter most to students.
-
References
- Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. In-formation Systems Research, 9(2), 204–215.
- Al-Abdullatif, A. M., & Alsubaie, M. A. (2024). ChatGPT in Learning: Assessing Students’ Use Intentions through the Lens of Perceived Value and the Influence of AI Literacy. Behavioral Sciences, 14(9), 845.
- Alasadi, E. A., & Baiz, C. R. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Educa-tion, 100(8), 2965-2971.
- Al-kfairy, M. (2024). Factors Impacting the Adoption and Acceptance of ChatGPT in Educational Settings: A Narrative Review of Empirical Studies. Applied System Innovation, 7(6), 110.
- Amin, M. A., Kim, Y. S., & Noh, M. (2024). Unveiling the drivers of ChatGPT utilization in higher education sectors: the direct role of perceived knowledge and the mediating role of trust in ChatGPT. Education and Information Technologies, 1-27.
- Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36 (3), 421–458.
- Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 63.
- Bao, H., Liu, W., & Dai, Z. (2025). Artificial intelligence vs. public administrators: Public trust, efficiency, and tolerance for errors. Technological Forecasting and Social Change, 215, 124102.
- Bhat, M. A., Tiwari, C. K., Bhaskar, P., & Khan, S. T. (2024). Examining ChatGPT adoption among educators in higher educational institutions using extended UTAUT model. Journal of Information, Communication and Ethics in Society, 22(3), 331-353.
- Bilynska, K., Markova, О., Chornobryva, N., Kuznietsov, Y., & Mingli, W. (2024). The power of digitalization in education: improving learning with interactive multimedia content. Amazonia Investiga, 13(76), 188-201.
- Bittle, K., & El-Gayar, O. (2025). Generative AI and academic integrity in higher education: A systematic review and research agenda. Information, 16(4), 296.
- Bouteraa, M., Chekima, B., Thurasamy, R., Bin-Nashwan, S. A., Al-Daihani, M., Baddou, A., ... & Ansar, R. (2024). Open Innovation in the Fi-nancial Sector: A Mixed-Methods Approach to Assess Bankers' Willingness to Embrace Open-AI ChatGPT. Journal of Open Innovation: Technol-ogy, Market, and Complexity, 10(1), 100216.
- Budhathoki, T., Zirar, A., Njoya, E. T., & Timsina, A. (2024). ChatGPT adoption and anxiety: a cross-country analysis utilising the unified theory of acceptance and use of technology (UTAUT). Studies in Higher Education, 1-16.
- Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201, 123247.
- Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern Methods for Business Research (pp. 295–336). Mahwah, NJ: Lawrence Erlbaum Associates.
- Ch'ng, L. K. (2024). Standing on the shoulders of generative ai. In Transforming Education With Generative AI: Prompt Engineering and Synthetic Content Creation (pp. 1-21). IGI Global.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340
- De Freitas, J., Nave, G., & Puntoni, S. (2025). Ideation with Generative AI—in Consumer Research and Beyond. Journal of Consumer Research, 52(1), 18-31.
- Di, M., Peng, Z., & Chen, S. (2025). Performance comparison and application of deep-learning-based image recognition models. In Second Interna-tional Conference on Big Data, Computational Intelligence, and Applications (BDCIA 2024) (Vol. 13550, pp. 1354-1362). SPIE.
- Duong, C. D., Nguyen, T. H., Nguyen, M. H., Dang, N. S., Vu, A. T., & Do, N. D. (2025). Exploring the role of generative artificial intelligence (ChatGPT) adoption in digital social entrepreneurship: a serial mediation model. Social Enterprise Journal.
- Farrelly, T., & Baker, N. (2023). Generative artificial intelligence: Implications and considerations for higher education practice. Education Sciences, 13(11), 1109.
- Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
- Fu, C. J., Silalahi, A. D. K., Huang, S. C., Phuong, D. T. T., Eunike, I. J., & Yu, Z. H. (2024). The (Un) Knowledgeable, the (Un) Skilled? Under-taking Chat-GPT Users’ Benefit-Risk-Coping Paradox in Higher Education Focusing on an Integrated, UTAUT and PMT. International Journal of Human–Computer Interaction, 1-31.
- Habibi, A., Mukminin, A., Octavia, A., Wahyuni, S., Danibao, B. K., & Wibowo, Y. G. (2024). ChatGPT acceptance and use through UTAUT and TPB: A big survey in five Indonesian Universities. Social Sciences & Humanities Open, 10, 101136.
- Haetami, H. (2025). AI-Driven Educational Transformation in Indonesia: From Learning Personalization to Institutional Management. AL-ISHLAH: Jurnal Pendidikan, 17(2), 1819-1832.
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
- Hsu, W. L., & Silalahi, A. D. K. (2024). Exploring the Paradoxical Use of ChatGPT in Education: Analyzing Benefits, Risks, and Coping Strate-gies through Integrated UTAUT and PMT Theories using a Hybrid Approach of SEM and fsQCA. Computers and Education: Artificial Intelli-gence, 100329.
- Hunaepi, H., & Suharta, I. (2024). Transforming education in Indonesia: The impact and challenges of the Merdeka belajar curriculum. Path of Sci-ence, 10(6), 5026-5039.
- Hwang, B. J., Yoon Hwang, J. U., & Hoe-Chang, Y. A. N. G. (2024). A Study on the Generative AI users' WOM: Focusing on the Mediation Ef-fect of Continuous Use Intention. The Journal of Economics, Marketing and Management, 12(5), 75-89.
- Idris, F., Pujani, V., & Yeni, Y. H. (2024). Pemodelan Determinan Niat Keberlanjutan Mahasiswa Universitas Untuk Menggunakan Kecerdasan Buatan Generatif: UTAUT 2 Yang Dimodifikasi. Journal of Economic, Bussines and Accounting (COSTING), 7(6), 1322-1344.
- Jain, A., Shah, M. A., & Jiwani, C. K. (2024). A Study On Evaluating The Antecedents Of The Adoption Of Chatgpt. Educational Administration: Theory and Practice, 30(6), 2243-2262.
- Jain, M., & Srihari, A. (2025). Comparison of Machine Learning Algorithm in Intrusion Detection Systems: A Review Using Binary Logistic Re-gression. Authorea Preprints.
- Kariodimedjo, D. W. (2025). Intellectual Property in the Metaverse and Artificial Intelligence: ChatGPT in the GCC Member States. In Intellectual Property and Innovation (pp. 47-77). Palgrave Macmillan, Singapore.
- Khairullah, S. A., Harris, S., Hadi, H. J., Sandhu, R. A., Ahmad, N., & Alshara, M. A. (2025). Implementing artificial intelligence in academic and administrative processes through responsible strategic leadership in the higher education institutions. In Frontiers in Education (Vol. 10, p. 1548104). Frontiers Media SA.
- Khan, A., Masrek, M. N., & Mahmood, K. (2019). The relationship of personal innovativeness, quality of digital resources and generic usability with users’ satisfaction: a Pakistani perspective. Digital Library Perspectives, 35(1), 15-30.
- Kustanto, A. (2024). Bridging the digital gap: Analysing the impact of ICT diffusion on income inequality in Indonesia. Икономическа мисъл, (3), 323-352.
- Lai, C. Y., Cheung, K. Y., Chan, C. S., & Law, K. K. (2024). Integrating the adapted UTAUT model with moral obligation, trust and perceived risk to predict ChatGPT adoption for assessment support: A survey with students. Computers and Education: Artificial Intelligence, 6, 100246.
- Lito, L. S. J., Samudro, B. R., & Soesilo, A. M. (2025, February). Digital Transformation And Regional Development Disparities In Indonesia. In The Fourth International Conference on Government Education Management and Tourism (Vol. 4, pp. 100-100).
- Liu, M., Zhang, L. J., & Biebricher, C. (2024). Investigating students’ cognitive processes in generative AI-assisted digital multimodal composing and traditional writing. Computers & Education, 211, 104977.
- Ma, J., Wang, P., Li, B., Wang, T., Pang, X. S., & Wang, D. (2025). Exploring user adoption of ChatGPT: A technology acceptance model perspec-tive. International Journal of Human–Computer Interaction, 41(2), 1431-1445.
- Mägi, A. (2024). The Factors Influencing The Use Of Artificial Intelligence In Accounting. Master Thesis. Estonian University of Life Science.
- Masrek, M. N., Anwar, N., Baharuddin, M. F., & Rusuli, M. S. C. (2020). Masculinity Behaviour And Entrepreneurial Intention: An Exploratory Study Among University Students. International Journal of Management (IJM), 11(8), 869-878.
- Masrek, M. N., Mohamed, I. S., Daud, N. M., & Omar, N. (2014). Technology trust and mobile banking satisfaction: a case of Malaysian consum-ers. Procedia-Social and behavioral sciences, 129, 53-58.
- Masrek, M. N., Susantari, T., Mutia, F., Yuwinanto, H. P., & Atmi, R. T. (2024). Enabling Education Everywhere: How artificial intelligence em-powers ubiquitous and lifelong learning. Environment-Behaviour Proceedings Journal, 9(SI18), 57-63.
- McKnight, D. H., Carter, M., Thatcher J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2), 12–32.
- McKnight, D. H., Choudhury, V. & Kacmar, C. (2002). Developing and Validating Trust Measures for e Commerce: An Integrative Typology. In-formation Systems Research, 13(3), 334-359.
- Muawanah, U., Marini, A., & Sarifah, I. (2024). The interconnection between digital literacy, artificial intelligence, and the use of E-learning appli-cations in enhancing the sustainability of Regional Languages: Evidence from Indonesia. Social Sciences & Humanities Open, 10, 101169.
- Musa, N., & Ishak, M. S. (2025). The identification of student's behaviours of digital amnesia syndromes and Google Effect in the Department of Library Sciences, State Islamic University of Ar-Raniry–Indonesia. Technology and Library Science, 29.
- Nguyen, K. V. (2025). The Use of Generative AI Tools in Higher Education: Ethical and Pedagogical Principles. Journal of Academic Ethics, 1-21.
- Nguyen, T. N., & Truong, H. T. (2025). Trends and emerging themes in the effects of generative artificial intelligence in education: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 21(4), em2613.
- Parveen, K., Phuc, T. Q. B., Alghamdi, A. A., Hajjej, F., Obidallah, W. J., Alduraywish, Y. A., & Shafiq, M. (2024). Unraveling the dynamics of ChatGPT adoption and utilization through Structural Equation Modeling. Scientific Reports, 14(1), 23469.
- Paul, A., Tretheway, P., & Liu, L. (2024, March). Using Generative AI in Visual Media: New Technologies, Teaching Tools, and Trends. In Society for Information Technology & Teacher Education International Conference (pp. 847-850). Association for the Advancement of Computing in Edu-cation (AACE).
- Paulussen, F. J. F. (2024). Employees’ Acceptance of Artificial Intelligence Chatbots: A Mixed Methods Approach. Master Thesis, Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology.
- Petricini, T., Zipf, S., & Wu, C. (2025). AI: Communicating academic honesty: teacher messages and student perceptions about generative AI. Frontiers in Communication, 10, 1544430.
- Pérez-Colado, I. J., Freire-Morán, M., Calvo-Morata, A., Pérez-Colado, V. M., & Fernández-Manjón, B. (2024, May). Ai asyet another tool in un-dergraduate student projects: Preliminary results. In 2024 IEEE Global Engineering Education Conference (EDUCON) (pp. 1-7). IEEE.
- Prakash, A., Haque, A., Islam, F., & Sonal, D. (2023). Exploring the potential of metaverse for higher education: Opportunities, challenges, and implications. Metaverse Basic and Applied Research, 2, 40-40.
- Rabuandika, A. (2025). Leveraging AI In Self-Directed Learning: A Phenomenological Study of Master’s Students’experiences. JP (Jurnal Pen-didikan): Teori dan Praktik, 10(1), 1-13.
- Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0. An updated guide and practical guide to statistical analysis.
- Rahmatunnisya, H., Dopo, M. R., Kalsum, N., & Husnan, L. H. (2024). A Decade of Consumer Behavior Research in Indonesia: Cultural, Techno-logical, and Economic Influences. Scientia. Technology, Science and Society, 1(3), 33-42.
- Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York, NY: Free Press.
- Saad, A. M., Mohamad, M. B., & Tsong, C. K. (2021). Behavioural intention of lecturers towards mobile learning and the moderating effect of dig-ital literacy in saudi arabian universities. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(1), 1-9.
- Sabeh, H. N. (2024, April). What Drives IT Students Toward ChatGPT? Analyzing the Factors Influencing Students' Intention to Use ChatGPT for Educational Purposes. In 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 533-539). IEEE.
- Salloum, S. A., Hatem, M., Salloum, A., & Alfaisal, R. (2024). Envisioning ChatGPT's Integration as Educational Platforms: A Hybrid SEM-ML Method for Adoption Prediction. In Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom (pp. 315-330). Cham: Springer Nature Switzerland.
- Shahzad, M. F., Xu, S., Liu, H., & Zahid, H. (2025). Generative Artificial Intelligence (ChatGPT‐4) and Social Media Impact on Academic Per-formance and Psychological Well‐Being in China's Higher Education. European Journal of Education, 60(1), e12835.
- Shamsudin, M. F., Hassim, A. A., & Abd Manaf, S. (2024). Mastering Probability and Non-Probability Methods for Accurate Research Insights. Journal of Postgraduate Current Business Research, 9(1), 38-53.
- Siregar, A. P., Siregar, A. M. E., Putri, D. A., Putri, S. L., & Siregar, Y. (2025). Students' academic Ethics in The Use of AI and Learning Support Technology. International Journal Multidisciplines and The Development of Science, 3(1), 9-19.
- Sirmayanti, S., Mahjud, I., Puspita, I., & Mahyati, L. (2022). Youth Creativity Media Empowerment Through Social Media Content Creator. Inter-national Journal of Community Service (IJCS), 2(4), 421-426.
- Surya Bahadur, B.C., Bhandari, P., Gurung, S. K., Srivastava, E., Ojha, D., & Dhungana, B. R. (2024). Examining the role of social influence, learning value and habit on students’ intention to use ChatGPT: the moderating effect of information accuracy in the UTAUT2 model. Cogent Ed-ucation, 11(1), 2403287.
- Tiffany, T., & Rosman, D. (2024). Understanding National Culture in Smart Technology Acceptance–A Case of Indonesia and Australia. In 2024 9th International Conference on Business and Industrial Research (ICBIR) (pp. 662-667). IEEE.
- Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., ... & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review. Education and information technologies, 28(6), 6695-6726.
- Vafadar, M., & Amani, A. M. (2024). Academic Education in the Era of Generative Artificial Intelligence. Journal of Electronics and Electrical Engineering, 110-124.
- Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1), 641-652.
- Venkatesh, V., Morris, M.G., Davis, G.B. & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarter-ly, 27(3), 425–478.
- Venkatesh, V., Thong, J. Y & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.
- Wood, D., & Moss, S. H. (2024). Evaluating the impact of students' generative AI use in educational contexts. Journal of Research in Innovative Teaching & Learning, 17(2), 152-167.
- Xavier, D. F., & Korunka, C. (2025). Integrating Artificial Intelligence across cultural orientations: A longitudinal examination of creative self-efficacy and employee autonomy. Computers in Human Behavior Reports, 18, 100623.
- Yehia, E. (2025). Developments on Generative AI. In AI and Emerging Technologies (pp. 139-160). CRC Press.
- Yetti, E. (2024). Pedagogical innovation and curricular adaptation in enhancing digital literacy: A local wisdom approach for sustainable develop-ment in Indonesia context. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100233.
- Zhan, Y., Boud, D., Dawson, P., & Yan, Z. (2025). Generative artificial intelligence as an enabler of student feedback engagement: a framework. Higher Education Research & Development, 1-16.
- Zhao, Y., Yusof, S. M., Hou, M., & Li, Z. (2024). How Can Generative Artificial Intelligence help Teachers in Early Childhood Education with their Teaching? Analyses from the Perspective of Teaching Methods. International Journal of Academic Research in Progressive Education and Development, 13(1).
-
Downloads
-
How to Cite
Masrek , M. N. ., Baharuddin , M. F. ., & Syam , A. M. . (2025). Determinants of Behavioral Intention to Use Generative AI: The Role of Trust, Personal Innovativeness, and UTAUT II Factors. International Journal of Basic and Applied Sciences, 14(4), 378-390. https://doi.org/10.14419/44tk8615
