Convolutional Neural Network with Mix-Up Data Augmentation for Ball Bearing Fault Diagnosis
-
https://doi.org/10.14419/08hkh236
Received date: July 2, 2025
Accepted date: August 13, 2025
Published date: January 12, 2026
-
Convolutional Neural Networks; Continuous Wavelet Transform; Fault Diagnostics; Data Augmentation; Scalogram -
Abstract
Ball bearings are vital for rotating machinery, requiring reliable fault diagnosis. Traditional approaches rely on manual feature extraction, requiring specialised expertise. Deep learning reduces human input but struggles with capturing global input context, integrating statistical features, and computational costs. This work introduces a CNN-based fault diagnosis method with Mix-up augmentation. Vibration signals are transformed into 2D time-frequency images via Continuous Wavelet Transform (CWT) to retain temporal-spectral information. Mix-up enhances dataset diversity, improving model robustness. CNNs then classify fault type and severity using these augmented inputs. Evaluat-ed on experimental and CWRU datasets, the approach surpasses state-of-the-art methods in accuracy and stability. Combining CWT’s de-tailed analysis, Mix-up’s data enrichment, and CNNs’ automated feature extraction resolves prior limitations, delivering an efficient solution for industrial fault detection. The framework ensures reliable, resource-effective automation, advancing predictive maintenance in rotating machinery.
-
References
- D.-T. Hoang and H.-J. Kang (2019) A survey on deep learning based bearing fault diagnosis. Neurocomputing335, pp. 327-335. https://doi.org/10.1016/j.neucom.2018.06.078.
- Faults in Electrical Machines and their Diagnosis, pp. 1-22.
- M. Kang, M. Islam, J. Kim, J. Kim, and M. Pecht (2016) A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics. IEEE Transactions on Industrial Electronics63 (5), pp. 3299-3310. https://doi.org/10.1109/TIE.2016.2527623.
- Q. Hu, X.-S. Si, A.-S. Qin, Y. Lv, and Q. Zhang (2020) Machinery fault diagnosis scheme using redefined dimensionless indicators and mrmr fea-ture selection. IEEE Access 8, pp. 40313-40326. https://doi.org/10.1109/ACCESS.2020.2976832.
- Randall, R., & Antoni, J. Why EMD and similar decompositions are of little benefit for bearing diagnostics. Mechanical Systems and Signal Pro-cessing. 2023 https://doi.org/10.1016/j.ymssp.2023.110207. https://doi.org/10.1016/j.ymssp.2023.110207.
- Yan, R., Shang, Z., Xu, H., Wen, J., Zhao, Z., Chen, X., & Gao, R. Wavelet transform for rotary machine fault diagnosis:10 years revisited. Me-chanical Systems and Signal Processing. 2023 https://doi.org/10.1016/j.ymssp.2023.110545.
- Alexakos, C., Karnavas, Y., Drakaki, M., & Tziafettas, I. A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors. Mach. Learn. Knowl. Extr.. 2021; 3. https://doi.org/10.3390/make3010011.
- Yuan, L., Lian, D., Kang, X., Chen, Y., Zhai, K.: Rolling bearing fault diagnosis based on convolutional neural network and support vector ma-chine. IEEE Access 8, 137395-137406 (2020). https://doi.org/10.1109/ACCESS.2020.3012053.
- Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: A review with applications. Signal processing 96, 1-15 (2014). https://doi.org/10.1016/j.sigpro.2013.04.015.
- Khraisat, A., Uddin, M., Halder, R., Aryal, S., & Uddin, A. Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. J. Big Data. 2024; 11. https://doi.org/10.1186/s40537-024-00973-y.
- Karnavas, Y.L., Chasiotis, I.D., Vrangas, A.: Fault diagnosis of squirrel-cage induction motor broken bars based on a model identification method with subtractive clustering. In: 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 304-310 (2017). IEEE. https://doi.org/10.1109/DEMPED.2017.8062372.
- Wu, W. Automotive Motor Fault Diagnosis Model Integrating Machine Learning Algorithm and Fuzzy Control Theory. International Journal of Fuzzy Systems. 2025 https://doi.org/10.1007/s40815-024-01926-6.
- Drakaki, M., Karnavas, Y.L., Karlis, A.D., Chasiotis, I.D., Tzionas, P.: Study on fault diagnosis of broken rotor bars in squirrel cage induction mo-tors: A multi-agent system approach using intelligent classifiers. IET Electric Power Applications 14(2), 245-255 (2019). https://doi.org/10.1049/iet-epa.2019.0619.
- Hosseini, N., Toshani, H., & Abdi, S. A Projection-Based Support Vector Machine Algorithm for Induction Motors’ Bearing Fault Detection. 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). 2023 https://doi.org/10.1109/SDEMPED54949.2023.10271436.
- Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks 61, 85-117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003.
- Qiao, M., Yan, S., Tang, X., Xu, C.: Deep convolutional and lstm recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads. IEEE Access 8, 66257-66269 (2020). https://doi.org/10.1109/ACCESS.2020.2985617.
- Li, X., Jiang, H., Xiong, X., Shao, H.: Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit net-work. Mechanism and Machine Theory 133, 229-249 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.11.005.
- Zhao, H., Chen, H., Chen, J., Li, Y., Xu, J., & Deng, W. Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network. IEEE Transactions on Reliability. 2023; 72. https://doi.org/10.1109/TR.2022.3180273.
- Haidong, S., Hongkai, J., Xingqiu, L., Shuaipeng, W.: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems 140, 1-14 (2018). https://doi.org/10.1016/j.knosys.2017.10.024.
- Hoang, D.-T., Kang, H.-J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Re-search 53, 42-50 (2019). https://doi.org/10.1016/j.cogsys.2018.03.002.
- Chen, Z., Mauricio, A., Li, W., Gryllias, K.: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolu-tional neural networks. Mechanical Systems and Signal Processing 140, 106683 (2020). https://doi.org/10.1016/j.ymssp.2020.106683.
- Yang, Y., Zheng, H., Li, Y., Xu, M., Chen, Y.: A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolu-tional neural network. ISA transactions 91, 235-252 (2019). https://doi.org/10.1016/j.isatra.2019.01.018.
- Simard, P., Lecun, Y., Denker, J.: Transformation invariance in pattern recognition -tangent distance and tangent propagation (2000). https://doi.org/10.1002/1098-1098(2000)11:3<181::AID-IMA1003>3.0.CO;2-E.
- Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).
- He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 (2016). https://doi.org/10.1109/CVPR.2016.90.
- Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: A review with applications. Signal processing 96, 1-15 (2014). https://doi.org/10.1016/j.sigpro.2013.04.015.
- Verstraete, D., Ferrada, A., Droguett, E.L., Meruane, V., Modarres, M.: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock and Vibration 2017 (2017). https://doi.org/10.1155/2017/5067651.
- Lin, J., Qu, L.: Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. Journal of sound and vibration 234(1), 135-148 (2000). https://doi.org/10.1006/jsvi.2000.2864.
- Cohen, M.X.: A better way to define and describe morlet wavelets for time-frequency analysis. bioRxiv (2018). https://doi.org/10.1101/397182.
- Inoue, H.: Data augmentation by pairing samples for images classification (2018).
- LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361(10), 1995 (1995).
- Bouvrie, J.: Notes on convolutional neural networks (2006).
- Center, B.D.: Case western reserve university seeded fault test data. Case Western Reserve University: Cleveland, OH, USA (2015).
- Ali, J.B., Saidi, L., Mouelhi, A., Chebel-Morello, B., Fnaiech, F.: Linear feature selection and classification using pnn and sfam neural networks for a nearly online diagnosis of bearing naturally progressing degradations. Engineering Applications of Artificial Intelligence 42, 67-81 (2015). https://doi.org/10.1016/j.engappai.2015.03.013.
- Wang, S., Xiang, J., Zhong, Y., Zhou, Y.: Convolutional neural network-based hidden markov models for rolling element bearing fault identifica-tion. Knowledge-Based Systems 144, 65-76 (2018). https://doi.org/10.1016/j.knosys.2017.12.027.
- Li, X., Zhang, W., Ding, Q.: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks. IEEE Transactions on Industrial Electronics 66(7), 5525-5534 (2018). https://doi.org/10.1109/TIE.2018.2868023.
- Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T.: Deep model-based domain adaptation for fault diagnosis. IEEE Transactions on In-dustrial Electronics 64(3), 2296-2305 (2016). https://doi.org/10.1109/TIE.2016.2627020.
- Yang, B., Lei, Y., Jia, F., Xing, S.: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bear-ings. Mechanical Systems and Signal Processing 122, 692-706 (2019). .https://doi.org/10.1016/j.ymssp.2018.12.051.
- Zhiyi, H., Haidong, S., Lin, J., Junsheng, C., Yu, Y.: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder. Measurement 152, 107393 (2020). https://doi.org/10.1016/j.measurement.2019.107393.
- Patil, R.: Noise reduction using wavelet transform and singular vector decomposition. Procedia Computer Science 54, 849–853 (2015). https://doi.org/10.1016/j.procs.2015.06.099.
- Galdran, A., Carneiro, G., González Ballester, M.A. (2021). Balanced-MixUp for Highly Imbalanced Medical Image Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_31.
-
Downloads
-
How to Cite
Baral , D. K. ., Patra , K. C. ., Behera , A. ., Sethy , N. K. ., Behera , D. K. ., & Sethi, R. . (2026). Convolutional Neural Network with Mix-Up Data Augmentation for Ball Bearing Fault Diagnosis. International Journal of Basic and Applied Sciences, 15(1), 68-78. https://doi.org/10.14419/08hkh236
