Convolutional Neural Network with Mix-Up Data Augmentation for Ball Bearing Fault Diagnosis

  • Authors

    • Dillip Kumar Baral Research Scholar, Department of Architecture, Veer Surendra Sai University of Technology, Burla, Odisha, India
    • Krishna Chandra Patra PhD research scholar, BPUT University, Rourkela, Odisha, India
    • Ambuja Behera GITA Autonomous College, BPUT, Odisha
    • Nameet Kumar Sethy Research Scholar, Indra Gandhi Institute of Technology, Sarang, BPUT
    • Dhiren Kumar Behera Mechanical Engineering, IGIT, Sarang, Odisha, India
    • Rabinarayan Sethi Mechanical Engineering, IGIT, Sarang, Odisha, India
    https://doi.org/10.14419/08hkh236

    Received date: July 2, 2025

    Accepted date: August 13, 2025

    Published date: January 12, 2026

  • Convolutional Neural Networks; Continuous Wavelet Transform; Fault Diagnostics; Data Augmentation; Scalogram
  • Abstract

    Ball bearings are vital for rotating machinery, requiring reliable fault diagnosis. Traditional approaches rely on manual feature extraction, ‎requiring specialised expertise. Deep learning reduces human input but struggles with capturing global input context, integrating statistical ‎features, and computational costs. This work introduces a CNN-based fault diagnosis method with Mix-up augmentation. Vibration signals ‎are transformed into 2D time-frequency images via Continuous Wavelet Transform (CWT) to retain temporal-spectral information. Mix-up ‎enhances dataset diversity, improving model robustness. CNNs then classify fault type and severity using these augmented inputs. Evaluat-‎ed on experimental and CWRU datasets, the approach surpasses state-of-the-art methods in accuracy and stability. Combining CWT’s de-‎tailed analysis, Mix-up’s data enrichment, and CNNs’ automated feature extraction resolves prior limitations, delivering an efficient solution ‎for industrial fault detection. The framework ensures reliable, resource-effective automation, advancing predictive maintenance in rotating ‎machinery‎.

  • References

    1. D.-T. Hoang and H.-J. Kang (2019) A survey on deep learning based bearing fault diagnosis. Neurocomputing335, pp. 327-335. https://doi.org/10.1016/j.neucom.2018.06.078.
    2. Faults in Electrical Machines and their Diagnosis, pp. 1-22.
    3. M. Kang, M. Islam, J. Kim, J. Kim, and M. Pecht (2016) A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics. IEEE Transactions on Industrial Electronics63 (5), pp. 3299-3310. https://doi.org/10.1109/TIE.2016.2527623.
    4. Q. Hu, X.-S. Si, A.-S. Qin, Y. Lv, and Q. Zhang (2020) Machinery fault diagnosis scheme using redefined dimensionless indicators and mrmr fea-ture selection. IEEE Access 8, pp. 40313-40326. https://doi.org/10.1109/ACCESS.2020.2976832.
    5. Randall, R., & Antoni, J. Why EMD and similar decompositions are of little benefit for bearing diagnostics. Mechanical Systems and Signal Pro-cessing. 2023 https://doi.org/10.1016/j.ymssp.2023.110207. https://doi.org/10.1016/j.ymssp.2023.110207.
    6. Yan, R., Shang, Z., Xu, H., Wen, J., Zhao, Z., Chen, X., & Gao, R. Wavelet transform for rotary machine fault diagnosis:10 years revisited. Me-chanical Systems and Signal Processing. 2023 https://doi.org/10.1016/j.ymssp.2023.110545.
    7. Alexakos, C., Karnavas, Y., Drakaki, M., & Tziafettas, I. A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors. Mach. Learn. Knowl. Extr.. 2021; 3. https://doi.org/10.3390/make3010011.
    8. Yuan, L., Lian, D., Kang, X., Chen, Y., Zhai, K.: Rolling bearing fault diagnosis based on convolutional neural network and support vector ma-chine. IEEE Access 8, 137395-137406 (2020). https://doi.org/10.1109/ACCESS.2020.3012053.
    9. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: A review with applications. Signal processing 96, 1-15 (2014). https://doi.org/10.1016/j.sigpro.2013.04.015.
    10. Khraisat, A., Uddin, M., Halder, R., Aryal, S., & Uddin, A. Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. J. Big Data. 2024; 11. https://doi.org/10.1186/s40537-024-00973-y.
    11. Karnavas, Y.L., Chasiotis, I.D., Vrangas, A.: Fault diagnosis of squirrel-cage induction motor broken bars based on a model identification method with subtractive clustering. In: 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 304-310 (2017). IEEE. https://doi.org/10.1109/DEMPED.2017.8062372.
    12. Wu, W. Automotive Motor Fault Diagnosis Model Integrating Machine Learning Algorithm and Fuzzy Control Theory. International Journal of Fuzzy Systems. 2025 https://doi.org/10.1007/s40815-024-01926-6.
    13. Drakaki, M., Karnavas, Y.L., Karlis, A.D., Chasiotis, I.D., Tzionas, P.: Study on fault diagnosis of broken rotor bars in squirrel cage induction mo-tors: A multi-agent system approach using intelligent classifiers. IET Electric Power Applications 14(2), 245-255 (2019). https://doi.org/10.1049/iet-epa.2019.0619.
    14. Hosseini, N., Toshani, H., & Abdi, S. A Projection-Based Support Vector Machine Algorithm for Induction Motors’ Bearing Fault Detection. 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). 2023 https://doi.org/10.1109/SDEMPED54949.2023.10271436.
    15. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks 61, 85-117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003.
    16. Qiao, M., Yan, S., Tang, X., Xu, C.: Deep convolutional and lstm recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads. IEEE Access 8, 66257-66269 (2020). https://doi.org/10.1109/ACCESS.2020.2985617.
    17. Li, X., Jiang, H., Xiong, X., Shao, H.: Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit net-work. Mechanism and Machine Theory 133, 229-249 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.11.005.
    18. Zhao, H., Chen, H., Chen, J., Li, Y., Xu, J., & Deng, W. Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network. IEEE Transactions on Reliability. 2023; 72. https://doi.org/10.1109/TR.2022.3180273.
    19. Haidong, S., Hongkai, J., Xingqiu, L., Shuaipeng, W.: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems 140, 1-14 (2018). https://doi.org/10.1016/j.knosys.2017.10.024.
    20. Hoang, D.-T., Kang, H.-J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Re-search 53, 42-50 (2019). https://doi.org/10.1016/j.cogsys.2018.03.002.
    21. Chen, Z., Mauricio, A., Li, W., Gryllias, K.: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolu-tional neural networks. Mechanical Systems and Signal Processing 140, 106683 (2020). https://doi.org/10.1016/j.ymssp.2020.106683.
    22. Yang, Y., Zheng, H., Li, Y., Xu, M., Chen, Y.: A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolu-tional neural network. ISA transactions 91, 235-252 (2019). https://doi.org/10.1016/j.isatra.2019.01.018.
    23. Simard, P., Lecun, Y., Denker, J.: Transformation invariance in pattern recognition -tangent distance and tangent propagation (2000). https://doi.org/10.1002/1098-1098(2000)11:3<181::AID-IMA1003>3.0.CO;2-E.
    24. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).
    25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 (2016). https://doi.org/10.1109/CVPR.2016.90.
    26. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: A review with applications. Signal processing 96, 1-15 (2014). https://doi.org/10.1016/j.sigpro.2013.04.015.
    27. Verstraete, D., Ferrada, A., Droguett, E.L., Meruane, V., Modarres, M.: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock and Vibration 2017 (2017). https://doi.org/10.1155/2017/5067651.
    28. Lin, J., Qu, L.: Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. Journal of sound and vibration 234(1), 135-148 (2000). https://doi.org/10.1006/jsvi.2000.2864.
    29. Cohen, M.X.: A better way to define and describe morlet wavelets for time-frequency analysis. bioRxiv (2018). https://doi.org/10.1101/397182.
    30. Inoue, H.: Data augmentation by pairing samples for images classification (2018).
    31. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361(10), 1995 (1995).
    32. Bouvrie, J.: Notes on convolutional neural networks (2006).
    33. Center, B.D.: Case western reserve university seeded fault test data. Case Western Reserve University: Cleveland, OH, USA (2015).
    34. Ali, J.B., Saidi, L., Mouelhi, A., Chebel-Morello, B., Fnaiech, F.: Linear feature selection and classification using pnn and sfam neural networks for a nearly online diagnosis of bearing naturally progressing degradations. Engineering Applications of Artificial Intelligence 42, 67-81 (2015). https://doi.org/10.1016/j.engappai.2015.03.013.
    35. Wang, S., Xiang, J., Zhong, Y., Zhou, Y.: Convolutional neural network-based hidden markov models for rolling element bearing fault identifica-tion. Knowledge-Based Systems 144, 65-76 (2018). https://doi.org/10.1016/j.knosys.2017.12.027.
    36. Li, X., Zhang, W., Ding, Q.: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks. IEEE Transactions on Industrial Electronics 66(7), 5525-5534 (2018). https://doi.org/10.1109/TIE.2018.2868023.
    37. Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T.: Deep model-based domain adaptation for fault diagnosis. IEEE Transactions on In-dustrial Electronics 64(3), 2296-2305 (2016). https://doi.org/10.1109/TIE.2016.2627020.
    38. Yang, B., Lei, Y., Jia, F., Xing, S.: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bear-ings. Mechanical Systems and Signal Processing 122, 692-706 (2019). .https://doi.org/10.1016/j.ymssp.2018.12.051.
    39. Zhiyi, H., Haidong, S., Lin, J., Junsheng, C., Yu, Y.: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder. Measurement 152, 107393 (2020). https://doi.org/10.1016/j.measurement.2019.107393.
    40. Patil, R.: Noise reduction using wavelet transform and singular vector decomposition. Procedia Computer Science 54, 849–853 (2015). https://doi.org/10.1016/j.procs.2015.06.099.
    41. Galdran, A., Carneiro, G., González Ballester, M.A. (2021). Balanced-MixUp for Highly Imbalanced Medical Image Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_31.
  • Downloads

  • How to Cite

    Baral , D. K. ., Patra , K. C. ., Behera , A. ., Sethy , N. K. ., Behera , D. K. ., & Sethi, R. . (2026). Convolutional Neural Network with Mix-Up Data Augmentation for Ball Bearing Fault Diagnosis. International Journal of Basic and Applied Sciences, 15(1), 68-78. https://doi.org/10.14419/08hkh236