The Role of IL-6, TGF-β, and Genetic Variants in The Pathophysiology of Thalassemia
-
https://doi.org/10.14419/gx1v9h63
Received date: June 25, 2025
Accepted date: July 2, 2025
Published date: October 12, 2025
-
Thalassemia; Inflammatory Cytokines; IL-6; TGF-Β; Genetic Factors -
Abstract
This study investigates the role of inflammatory cytokines and genetic factors in thalassemia, a genetic blood disorder characterized by chronic anemia and systemic complications. The study compared levels of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) between thalassemia patients and healthy controls, as well as analyzed genotype and allele frequencies to explore potential genetic associations. Results showed significantly elevated levels of IL-6 (25.88 ± 8.85 pg/ml vs. 14.32 ± 12.14 pg/ml, p < 0.001) and TGF-β (1590.91 ± 413.31 pg/ml . 30.23 ± 16.19 pg/ml, p < 0.001) in thalassemia patients, indicating a strong association with chronic inflammation and fibrosis. Genetic analysis revealed that the AG genotype and G allele were more frequent in controls (60% and 75%, respectively) compared to patients (50% and 65%, p = 0.002 and p = 0.02), suggesting a potential protective effect. These findings highlight the importance of cytokine dysregulation and genetic factors in the pathophysiology of thalassemia. Elevated IL-6 and TGF-β levels may serve as biomarkers for disease progression and complications, while genetic profiling could aid in risk stratification and personalized treatment strategies. Future research with larger cohorts is needed to validate these findings and explore their clinical applications. This study contributes to the growing understanding of thalassemia and underscores the potential for targeted therapies to improve patient outcomes.
-
References
- Bou-Fakhredin, R., Tabbikha, R., Daadaa, H., and Taher, A. T. (2020). Emerging therapies in β-thalassemia: toward a new era in management. Ex-pert opinion on emerging drugs, 25(2), 113–122. https://doi.org/10.1080/14728214.2020.1752180.
- Al-Barazanchi, A. Z. , Abdulateef, S.S. and Hassan, M. K. (2021). Co- Inheritance of α- thalassemia gene mutation in patients with sickle cell dis-ease: Impact on clinical and hematological variables. Nigerian journal of clinical practice, 24(6), 874-882. https://doi.org/10.4103/njcp.njcp_11_20.
- Gambari R. (2012). Alternative options for DNA-based experimental therapy of β-thalassemia. Expert opinion on biological therapy, 12(4), 443–462. https://doi.org/10.1517/14712598.2012.665047.
- Adnan I. Al-Badran, Meaad K. Hassan and Assad F. Washil. (2016). β-Thalassemia Mutations among Thalassemia Major Patients in Basrah Prov-ince – IraqInt.J.Curr.Microbiol.App.Sci. 5(5): 448-457. https://doi.org/10.20546/ijcmas.2016.505.047.
- Jahangiri, M., Rahim, F., Saki, N., & Saki Malehi, A. (2021). Application of Bayesian Decision Tree in Hematology Research: Differential Diagno-sis of β-Thalassemia Trait from Iron Deficiency Anemia. Computational and mathematical methods in medicine, 6401105. https://doi.org/10.1155/2021/6401105.
- Haj Khelil, A., Denden, S., Leban, N., Daimi, H., Lakhdhar, R., Lefranc, G., Ben Chibani, J., & Perrin, P. (2010). Hemoglobinopathies in North Africa: a review. Hemoglobin, 34(1), 1–23. https://doi.org/10.3109/03630260903571286.
- Goldman, L. and Schafer, A. I. (2010). Goldman-Cecil Medicine, Elsevier Health Sciences.
- Longo, F., Piolatto, A.; Ferrero, G.B.; Piga, A. (2021).Ineffective Erythropoiesis in beta-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int. J. Mol. Sci., 22, 7229. https://doi.org/10.3390/ijms22137229.
- Pietras, E.M.; Lakshminarasimhan, R.; Techner, J.M.; Fong, S.; Flach, J.; Binnewies, M.; Passegue, E. (2014). Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med., 211, 245–262. https://doi.org/10.1084/jem.20131043.
- Cappellini, M. D., Cohen, A., Porter, J., Taher, A., & Viprakasit, V. (2020). Guidelines for the Management of Transfusion-Dependent Thalassaemia (TDT). Thalassaemia International Federation.
- Galarneau, G., Coady, S., & Garrett, M. E. (2010). Genetic modifiers of hemoglobinopathies. Current Opinion in Hematology, 17(3), 201-208.
- Gharagozloo, M., Karimi, M., & Amirghofran, Z. (2015). The role of inflammatory cytokines in the pathogenesis of thalassemia major. Cytokine, 73(2), 245-252.
- Makis, A., Hatzimichael, E., & Bourantas, K. L. (2017). The role of cytokines in the pathogenesis of thalassemia. Hematology, 22(5), 265-272.
- Musallam, K. M., Taher, A. T., Cappellini, M. D., & Sankaran, V. G. (2012). Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood, 119(1), 219-226. https://doi.org/10.1182/blood-2011-09-382408.
- Taher, A. T., Weatherall, D. J., & Cappellini, M. D. (2018). Thalassaemia. The Lancet, 391(10116), 155-167. https://doi.org/10.1016/S0140-6736(17)31822-6.
- Vichinsky, E., Neufeld, E. J., & Cohen, A. (2018). Thalassemia: From bedside to genome and back. Hematology, 2018(1), 1-8.
- Vichinsky, E., Neufeld, E. J., & Cohen, A. (2018). Thalassemia: From bedside to genome and back. Hematology, 2018(1), 1-8.
- Thein, S. L. (2013). The molecular basis of β-thalassemia. Cold Spring Harbor Perspectives in Medicine, 3(5), a011700. https://doi.org/10.1101/cshperspect.a011700.
- Orter, J. B., & Garbowski, M. (2013). The pathophysiology of transfusional iron overload. Hematology/Oncology Clinics of North America, 27(4), 781-796. https://doi.org/10.1016/j.hoc.2014.04.003.
- Gharagozloo, M., Karimi, M., & Amirghofran, Z. (2015). The role of inflammatory cytokines in the pathogenesis of thalassemia major. Cytokine, 73(2), 245-252.
-
Downloads
-
How to Cite
Al- Saadi , H. H. A. ., Al-Mashhadani , M. S. M., & Mohammed , H. J. . (2025). The Role of IL-6, TGF-β, and Genetic Variants in The Pathophysiology of Thalassemia. International Journal of Basic and Applied Sciences, 14(6), 228-231. https://doi.org/10.14419/gx1v9h63
