Design and Performance Analysis of A Parabolic Dish SolarA Concentrator for A Solar Thermal Power Plant
-
https://doi.org/10.14419/a1xj2v69
Received date: June 23, 2025
Accepted date: July 29, 2025
Published date: August 4, 2025
-
Concentrated Solar Power System; Parabolic Dish Solar Concentrator; Solar Thermal Technologies -
Abstract
This research emphasizes concentrating solar technology as an efficient method to meet rising energy demands and reduce dependence on fossil fuels. Concentrating solar power (CSP) systems concentrate sunlight through mirrors to produce thermal or electrical energy, rendering them ideal for medium and large-scale renewable energy generation. This study examines the design and performance of a parabolic dish solar concentrator in CSP systems, emphasizing that it produces high-pressure steam for various industrial operations as well as solar thermal power plants. Compared to other types of solar concentrators, the parabolic dish solar collector (PDSC) has a higher concentration ratio, better thermal efficiency, and is especially well-suited for decentralized energy applications. However, key design parameters such as the aperture area of the dish concentrator, rim angle, focal length of the parabolic dish concentrator, focal point diameter, concentration ratio, and thermal modelling play a crucial role in enhancing the overall performance of the PDSC. The performance of the PDSC is studied using System Advisor Model and MATLAB software, where simulations are run to assess thermal efficiency, heat transfer rates, and energy output. The results demonstrate the feasibility and performance potential of the PDSC technologies.
-
References
- Suman, S., Khan, M. K., & Pathak, M. (2015). Performance enhancement of solar collectors—A review. Renewable and Sustainable Energy Re-views, 49, 192-210. https://doi.org/10.1016/j.rser.2015.04.087
- Bellos, E., Mathioulakis, E., Papanicolaou, E., & Belessiotis, V. (2018). Experimental investigation of the daily performance of an integrated linear Fresnel reflector system. Solar Energy, 167, 220-230. https://doi.org/10.1016/j.solener.2018.04.019
- Ghodbane, M., Bellos, E., Said, Z., Boumeddane, B., Khechekhouche, A., Sheikholeslami, M., & Ali, Z. M. (2021). Energy, financial, and envi-ronmental investigation of a direct steam production power plant driven by linear fresnel solar reflec-tors. Journal of Solar Energy Engineering, 143(2), 021008. https://doi.org/10.1115/1.4048158
- Aljudaya, A., Michailos, S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2024). Techno-Economic Assess-ment of Molten Salt-Based Concentrated Solar Power: Case Study of Linear Fresnel Reflector with a Fossil Fuel Backup un-der Saudi Arabia’s Climate Conditions. En-ergies, 17(11), 2719. https://doi.org/10.3390/en17112719
- Mohamed, A., & Yahiya, A. (2016, February). Development and characterization of parabolic trough for generating 50MW concentrating solar power plant. In 2016 Conference of Basic Sciences and Engineering Studies (SGCAC) (pp. 80-87). IEEE. https://doi.org/10.1109/SGCAC.2016.7458010
- Praveen, R. P., Baseer, M. A., & Sankara, N. K. (2018, March). Design. Performance analysis and optimization of a 100 MW concentrated solar power plant with thermal energy storage. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCTCT.2018.8551033
- Awan, A. B., Khan, M. N., Zubair, M., & Bellos, E. (2020). Commercial parabolic trough CSP plants: Research trends and technological advance-ments. Solar Energy, 211, 1422-1458. https://doi.org/10.1016/j.solener.2020.09.072
- Yılmaz, İ. H., & Mwesigye, A. (2018). Modelling , simulation and performance analysis of parabolic trough solar collectors: a comprehensive re-view. Applied energy, 225, 135-174. https://doi.org/10.1016/j.apenergy.2018.05.014
- Guillén-Lambea, S., & Carvalho, M. (2021). A critical review of the greenhouse gas emissions associated with parabolic trough concentrating solar power plants. Journal of Cleaner Production, 289, 125774. https://doi.org/10.1016/j.jclepro.2020.125774
- Cuce, P. M., Guclu, T., & Cuce, E. (2024). Design, modelling, environmental, economic and performance analysis of para-bolic trough solar collec-tor (PTC) based cogeneration systems assisted by thermoelectric generators (TEGs). Sustainable Energy Technologies and Assessments, 64, 103745. https://doi.org/10.1016/j.seta.2024.103745
- Boretti, A., Castelletto, S., & Al-Zubaidy, S. (2019). Concentrating solar power tower technology: present status and out-look. Nonlinear Engineer-ing, 8(1), 10-31. https://doi.org/10.1515/nleng-2017-0171
- Awan, A. B., Zubair, M., & Mouli, K. V. C. (2020). Design, optimization and performance comparison of solar tower and photovoltaic power plants. Energy, 199, 117450. https://doi.org/10.1016/j.energy.2020.117450
- Merchán, R. P., Santos, M. J., Medina, A., & Hernández, A. C. (2022). High temperature central tower plants for concentrat-ed solar power: 2021 overview. Renewable and Sustainable Energy Reviews, 155, 111828. https://doi.org/10.1016/j.rser.2021.111828
- Xiao, G., Nie, J., Xu, H., Zhang, C., & Zhu, P. (2022). Performance analysis of a solar power tower plant integrated with trough collectors. Applied Thermal Engineering, 214, 118853. https://doi.org/10.1016/j.applthermaleng.2022.118853
- Gentile, G., Picotti, G., Binotti, M., Cholette, M. E., & Manzolini, G. (2024). A comprehensive methodology for the design of solar tower external receivers. Renewable and Sustainable Energy Reviews, 193, 114153. https://doi.org/10.1016/j.rser.2023.114153
- Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2016). Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy conversion and management, 126, 60-75. https://doi.org/10.1016/j.enconman.2016.07.067
- Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2017). Design analysis factors and specifications of solar dish technologies for dif-ferent systems and applications. Renewable and Sustainable Energy Reviews, 67, 1019-1036. https://doi.org/10.1016/j.rser.2016.09.077
- Kumar, K. H., Daabo, A. M., Karmakar, M. K., & Hirani, H. (2022). Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations. Environmental Science and Pollution Research, 29(22), 32335-32367. https://doi.org/10.1007/s11356-022-18586-4
- Farhat, M. H., Mazloum, Y., Wakim, S., Nader, W. B., ALEbrahim, M., & Ghareeb, N. (2024). Energy optimization of para-bolic dish solar con-centrator coupled to organic Rankine cycle: Experimental and analytical investigation of cavity receiver design and covering effects. International Journal of Thermofluids, 23, 100730. https://doi.org/10.1016/j.ijft.2024.100730
- Lovegrove, K., Burgess, G., & Pye, J. (2011). A new 500 m2 paraboloidal dish solar concentrator. Solar energy, 85(4), 620-626. https://doi.org/10.1016/j.solener.2010.01.009
- Mohamed, F. M., Jassim, A. S., Mahmood, Y. H., & Ahmed, M. A. (2012). Design and study of portable solar dish concen-trator. International Journal of Recent Research and Review, 3, 52-59
- [22] Babikir, M. H., Chara-Dackou, V. S., Njomo, D., Barka, M., Khayal, M. Y., Legue, D. R. K., & Gram-Shou, J. P. (2020). Simplified modelling and simulation of electricity production from a dish/stirling system. International journal of photoener-gy, 2020(1), 7398496. https://doi.org/10.1155/2020/7398496
- Eterafi, S., Gorjian, S., & Amidpour, M. (2021). Effect of covering aperture of conical cavity receiver on thermal perfor-mance of parabolic dish collector: experimental and numerical investigations. Journal of Renewable Energy and Environ-ment, 8(4), 29-41
- Blanco, M. J., & Miller, S. (2017). Introduction to concentrating solar thermal (CST) technologies. In Advances in Concen-trating Solar Thermal Research and Technology (pp. 3-25). Wood head Publishing. https://doi.org/10.1016/B978-0-08-100516-3.00001-0
- Ravelli, S., Franchini, G., & Perdichizzi, A. (2018). Comparison of different CSP technologies for combined power and cool-ing production. Re-newable Energy, 121, 712-721. https://doi.org/10.1016/j.renene.2018.01.074
- Alam, M. I., Nuhash, M. M., Zihad, A., Nakib, T. H., & Ehsan, M. M. (2023). Conventional and emerging CSP technologies and design modifica-tions: research status and recent advancements. International Journal of Thermofluids, 20, 100406. https://doi.org/10.1016/j.ijft.2023.100406
- Hebbal, U., Soragaon, B., Rathnakar, G., AN, M. D., Thippeswamy, L. R., Nagabhushana, N., & Aden, A. A. (2024). Prin-cipal Difficulties with Parabolic Trough Collector Systems and Performance-Boosting Strategies: A Comprehensive Re-view. International Journal of Thermofluids, 101009. https://doi.org/10.1016/j.ijft.2024.101009
- Coventry, J., & Andraka, C. (2017). Dish systems for CSP. Solar Energy, 152, 140-170. https://doi.org/10.1016/j.solener.2017.02.056
- Shaikh, P. H., Lashari, A. A., Leghari, Z. H., & Memon, Z. A. (2021). Techno‐enviro‐economic assessment of a standalone parabolic solar dish stir-ling system for electricity generation. International Journal of Energy Research, 45(7), 10250-10270. https://doi.org/10.1002/er.6513
- Alkhalaf, Q., Kumar, R., Suri, A. R. S., Thapa, S., Lee, D., Alwetaishi, M., & Ağbulut, Ü. (2025). A critical discussion of modelling, performance assessment, and design recommendations-based case study of solar dish Stirling system. Journal of Thermal Analysis and Calorimetry, 1-25. https://doi.org/10.1007/s10973-024-13879-x
- Castellanos, L. S. M., Noguera, A. L. G., Caballero, G. E. C., De Souza, A. L., Cobas, V. R. M., Lora, E. E. S., & Venturini, O. J. (2019). Experi-mental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid. Renewable energy, 135, 259-265. https://doi.org/10.1016/j.renene.2018.11.095
- Beltran, R., Velazquez, N., Espericueta, A. C., Sauceda, D., & Perez, G. (2012). Mathematical model for the study and design of a solar dish col-lector with cavity receiver for its application in Stirling engines. Journal of mechanical science and technol-ogy, 26, 3311-3321. https://doi.org/10.1007/s12206-012-0801-0
- Kumar, K. H., Daabo, A. M., Karmakar, M. K., & Hirani, H. (2022). Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations. Environmental Science and Pollution Research, 29(22), 32335-32367. https://doi.org/10.1007/s11356-022-18586-4
- Basem, A., Moawed, M., Abbood, M. H., & El-Maghlany, W. M. (2022). The design of a hybrid parabolic solar dish–steam power plant: An exper-imental study. Energy Reports, 8, 1949-1965. https://doi.org/10.1016/j.egyr.2021.11.236
- Basem, A., Moawed, M., Abbood, M. H., & El-Maghlany, W. M. (2022). The design of a hybrid parabolic solar dish–steam power plant: An exper-imental study. Energy Reports, 8, 1949-1965. https://doi.org/10.1016/j.egyr.2021.11.236
- Kumar, K. H., Reddy, D. S., & Karmakar, M. (2023). Optical modelling of a cylindrical-hemispherical receiver for parabolic dish concentrator. En-vironmental Science and Pollution Research, 30(22), 63121-63134. https://doi.org/10.1007/s11356-023-26432-4
- Muller-Steinhagen, H. (2013). Concentrating solar thermal power. Philosophical Transactions of the Royal Society A: Math-ematical, Physical and Engineering Sciences, 371(1996), 20110433. https://doi.org/10.1098/rsta.2011.0433
- Sahu, S. K., K, A. S., & Natarajan, S. K. (2021). Electricity generation using solar parabolic dish system with thermoelectric generator—an experi-mental investigation. Heat Transfer, 50(8), 7784-7797. https://doi.org/10.1002/htj.22253
-
Downloads
-
How to Cite
Patel, M. . ., & Vyas, S. R. . (2025). Design and Performance Analysis of A Parabolic Dish SolarA Concentrator for A Solar Thermal Power Plant. International Journal of Basic and Applied Sciences, 14(4), 75-83. https://doi.org/10.14419/a1xj2v69
