Design and Performance Analysis of A Parabolic Dish Solar‎A Concentrator for A Solar Thermal Power Plant

  • Authors

    • Maulik Patel Research Scholar, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, India
    • Sanjay. R. Vyas Professor, Electrical Department, LDRP Institute of Technology and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, India
    https://doi.org/10.14419/a1xj2v69

    Received date: June 23, 2025

    Accepted date: July 29, 2025

    Published date: August 4, 2025

  • Concentrated Solar Power System; Parabolic Dish Solar Concentrator; Solar Thermal Technologies
  • Abstract

    This research emphasizes concentrating solar technology as an efficient method to meet rising energy demands and reduce dependence on ‎fossil fuels. Concentrating solar power (CSP) systems concentrate sunlight through mirrors to produce thermal or electrical energy, render‎ing them ideal for medium and large-scale renewable energy generation. This study examines the design and performance of a parabolic ‎dish solar concentrator in CSP systems, emphasizing that it produces high-pressure steam for various industrial operations as well as solar ‎thermal power plants. Compared to other types of solar concentrators, the parabolic dish solar collector (PDSC) has a higher concentration ‎ratio, better thermal efficiency, and is especially well-suited for decentralized energy applications. However, key design parameters such as ‎the aperture area of the dish concentrator, rim angle, focal length of the parabolic dish concentrator, focal point diameter, concentration ratio, ‎and thermal modelling play a crucial role in enhancing the overall performance of the PDSC. The performance of the PDSC is studied using ‎System Advisor Model and MATLAB software, where simulations are run to assess thermal efficiency, heat transfer rates, and energy ‎output. The results demonstrate the feasibility and performance potential of the PDSC technologies‎.

  • References

    1. Suman, S., Khan, M. K., & Pathak, M. (2015). Performance enhancement of solar collectors—A review. Renewable and ‎Sustainable Energy Re-views, 49, 192-210.‎ https://doi.org/10.1016/j.rser.2015.04.087
    2. Bellos, E., Mathioulakis, E., Papanicolaou, E., & Belessiotis, V. (2018). Experimental investigation of the daily performance ‎of an integrated linear Fresnel reflector system. Solar Energy, 167, 220-230.‎ https://doi.org/10.1016/j.solener.2018.04.019
    3. Ghodbane, M., Bellos, E., Said, Z., Boumeddane, B., Khechekhouche, A., Sheikholeslami, M., & Ali, Z. M. (2021). Energy, ‎financial, and envi-ronmental investigation of a direct steam production power plant driven by linear fresnel solar reflec-‎tors. Journal of Solar Energy Engineering, 143(2), 021008.‎ https://doi.org/10.1115/1.4048158
    4. Aljudaya, A., Michailos, S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2024). Techno-Economic Assess-‎ment of Molten Salt-Based Concentrated Solar Power: Case Study of Linear Fresnel Reflector with a Fossil Fuel Backup un-‎der Saudi Arabia’s Climate Conditions. En-ergies, 17(11), 2719.‎ https://doi.org/10.3390/en17112719
    5. Mohamed, A., & Yahiya, A. (2016, February). Development and characterization of parabolic trough for generating 50MW ‎concentrating solar power plant. In 2016 Conference of Basic Sciences and Engineering Studies (SGCAC) (pp. 80-87). IEEE.‎ https://doi.org/10.1109/SGCAC.2016.7458010
    6. Praveen, R. P., Baseer, M. A., & Sankara, N. K. (2018, March). Design. Performance analysis and optimization of a 100 MW ‎concentrated solar power plant with thermal energy storage. In 2018 International Conference on Current Trends towards ‎Converging Technologies (ICCTCT) (pp. 1-6). IEEE.‎ https://doi.org/10.1109/ICCTCT.2018.8551033
    7. Awan, A. B., Khan, M. N., Zubair, M., & Bellos, E. (2020). Commercial parabolic trough CSP plants: Research trends and ‎technological advance-ments. Solar Energy, 211, 1422-1458. ‎https://doi.org/10.1016/j.solener.2020.09.072
    8. Yılmaz, İ. H., & Mwesigye, A. (2018). Modelling , simulation and performance analysis of parabolic trough solar collectors: a ‎comprehensive re-view. Applied energy, 225, 135-174.‎ https://doi.org/10.1016/j.apenergy.2018.05.014
    9. Guillén-Lambea, S., & Carvalho, M. (2021). A critical review of the greenhouse gas emissions associated with parabolic ‎trough concentrating solar power plants. Journal of Cleaner Production, 289, 125774.‎ https://doi.org/10.1016/j.jclepro.2020.125774
    10. Cuce, P. M., Guclu, T., & Cuce, E. (2024). Design, modelling, environmental, economic and performance analysis of para-‎bolic trough solar collec-tor (PTC) based cogeneration systems assisted by thermoelectric generators (TEGs). Sustainable ‎Energy Technologies and Assessments, 64, 103745.‎ https://doi.org/10.1016/j.seta.2024.103745
    11. Boretti, A., Castelletto, S., & Al-Zubaidy, S. (2019). Concentrating solar power tower technology: present status and out-‎look. Nonlinear Engineer-ing, 8(1), 10-31.‎ https://doi.org/10.1515/nleng-2017-0171
    12. ‎Awan, A. B., Zubair, M., & Mouli, K. V. C. (2020). Design, optimization and performance comparison of solar tower and ‎photovoltaic power plants. Energy, 199, 117450.‎ https://doi.org/10.1016/j.energy.2020.117450
    13. Merchán, R. P., Santos, M. J., Medina, A., & Hernández, A. C. (2022). High temperature central tower plants for concentrat-‎ed solar power: 2021 overview. Renewable and Sustainable Energy Reviews, 155, 111828.‎ https://doi.org/10.1016/j.rser.2021.111828
    14. Xiao, G., Nie, J., Xu, H., Zhang, C., & Zhu, P. (2022). Performance analysis of a solar power tower plant integrated with ‎trough collectors. Applied Thermal Engineering, 214, 118853.‎ https://doi.org/10.1016/j.applthermaleng.2022.118853
    15. Gentile, G., Picotti, G., Binotti, M., Cholette, M. E., & Manzolini, G. (2024). A comprehensive methodology for the design of ‎solar tower external receivers. Renewable and Sustainable Energy Reviews, 193, 114153.‎ https://doi.org/10.1016/j.rser.2023.114153
    16. ‎Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2016). Solar parabolic dish Stirling engine system design, ‎simulation, and thermal analysis. Energy conversion and management, 126, 60-75.‎ https://doi.org/10.1016/j.enconman.2016.07.067
    17. ‎Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2017). Design analysis factors and specifications of solar ‎dish technologies for dif-ferent systems and applications. Renewable and Sustainable Energy Reviews, 67, 1019-1036.‎ https://doi.org/10.1016/j.rser.2016.09.077
    18. ‎Kumar, K. H., Daabo, A. M., Karmakar, M. K., & Hirani, H. (2022). Solar parabolic dish collector for concentrated solar ‎thermal systems: a review and recommendations. Environmental Science and Pollution Research, 29(22), 32335-32367.‎ https://doi.org/10.1007/s11356-022-18586-4
    19. Farhat, M. H., Mazloum, Y., Wakim, S., Nader, W. B., ALEbrahim, M., & Ghareeb, N. (2024). Energy optimization of para-‎bolic dish solar con-centrator coupled to organic Rankine cycle: Experimental and analytical investigation of cavity receiver ‎design and covering effects. International Journal of Thermofluids, 23, 100730.‎ https://doi.org/10.1016/j.ijft.2024.100730
    20. Lovegrove, K., Burgess, G., & Pye, J. (2011). A new 500 m2 paraboloidal dish solar concentrator. Solar energy, 85(4), 620-‎‎626.‎ https://doi.org/10.1016/j.solener.2010.01.009
    21. Mohamed, F. M., Jassim, A. S., Mahmood, Y. H., & Ahmed, M. A. (2012). Design and study of portable solar dish concen-‎trator. International Journal of Recent Research and Review, 3, 52-59
    22. ‎[22]‎ Babikir, M. H., Chara-Dackou, V. S., Njomo, D., Barka, M., Khayal, M. Y., Legue, D. R. K., & Gram-Shou, J. P. (2020). ‎Simplified modelling and simulation of electricity production from a dish/stirling system. International journal of photoener-‎gy, 2020(1), 7398496.‎ https://doi.org/10.1155/2020/7398496
    23. ‎Eterafi, S., Gorjian, S., & Amidpour, M. (2021). Effect of covering aperture of conical cavity receiver on thermal perfor-‎mance of parabolic dish collector: experimental and numerical investigations. Journal of Renewable Energy and Environ-‎ment, 8(4), 29-41
    24. Blanco, M. J., & Miller, S. (2017). Introduction to concentrating solar thermal (CST) technologies. In Advances in Concen-‎trating Solar Thermal Research and Technology (pp. 3-25). Wood head Publishing.‎ https://doi.org/10.1016/B978-0-08-100516-3.00001-0
    25. Ravelli, S., Franchini, G., & Perdichizzi, A. (2018). Comparison of different CSP technologies for combined power and cool-‎ing production. Re-newable Energy, 121, 712-721.‎ https://doi.org/10.1016/j.renene.2018.01.074
    26. Alam, M. I., Nuhash, M. M., Zihad, A., Nakib, T. H., & Ehsan, M. M. (2023). Conventional and emerging CSP technologies ‎and design modifica-tions: research status and recent advancements. International Journal of Thermofluids, 20, 100406.‎ https://doi.org/10.1016/j.ijft.2023.100406
    27. ‎Hebbal, U., Soragaon, B., Rathnakar, G., AN, M. D., Thippeswamy, L. R., Nagabhushana, N., & Aden, A. A. (2024). Prin-‎cipal Difficulties with Parabolic Trough Collector Systems and Performance-Boosting Strategies: A Comprehensive Re-‎view. International Journal of Thermofluids, 101009.‎ https://doi.org/10.1016/j.ijft.2024.101009
    28. Coventry, J., & Andraka, C. (2017). Dish systems for CSP. Solar Energy, 152, 140-170.‎ https://doi.org/10.1016/j.solener.2017.02.056
    29. Shaikh, P. H., Lashari, A. A., Leghari, Z. H., & Memon, Z. A. (2021). Techno‐enviro‐economic assessment of a standalone ‎parabolic solar dish stir-ling system for electricity generation. International Journal of Energy Research, 45(7), 10250-10270.‎ https://doi.org/10.1002/er.6513
    30. Alkhalaf, Q., Kumar, R., Suri, A. R. S., Thapa, S., Lee, D., Alwetaishi, M., & Ağbulut, Ü. (2025). A critical discussion of ‎modelling, performance assessment, and design recommendations-based case study of solar dish Stirling system. Journal of ‎Thermal Analysis and Calorimetry, 1-25.‎ https://doi.org/10.1007/s10973-024-13879-x
    31. Castellanos, L. S. M., Noguera, A. L. G., Caballero, G. E. C., De Souza, A. L., Cobas, V. R. M., Lora, E. E. S., & Venturini, ‎O. J. (2019). Experi-mental analysis and numerical validation of the solar Dish/Stirling system connected to the electric ‎grid. Renewable energy, 135, 259-265.‎ https://doi.org/10.1016/j.renene.2018.11.095
    32. Beltran, R., Velazquez, N., Espericueta, A. C., Sauceda, D., & Perez, G. (2012). Mathematical model for the study and design ‎of a solar dish col-lector with cavity receiver for its application in Stirling engines. Journal of mechanical science and technol-‎ogy, 26, 3311-3321.‎ https://doi.org/10.1007/s12206-012-0801-0
    33. Kumar, K. H., Daabo, A. M., Karmakar, M. K., & Hirani, H. (2022). Solar parabolic dish collector for concentrated solar ‎thermal systems: a review and recommendations. Environmental Science and Pollution Research, 29(22), 32335-32367.‎ https://doi.org/10.1007/s11356-022-18586-4
    34. Basem, A., Moawed, M., Abbood, M. H., & El-Maghlany, W. M. (2022). The design of a hybrid parabolic solar dish–steam ‎power plant: An exper-imental study. Energy Reports, 8, 1949-1965.‎ https://doi.org/10.1016/j.egyr.2021.11.236
    35. ‎Basem, A., Moawed, M., Abbood, M. H., & El-Maghlany, W. M. (2022). The design of a hybrid parabolic solar dish–steam ‎power plant: An exper-imental study. Energy Reports, 8, 1949-1965.‎ https://doi.org/10.1016/j.egyr.2021.11.236
    36. Kumar, K. H., Reddy, D. S., & Karmakar, M. (2023). Optical modelling of a cylindrical-hemispherical receiver for parabolic ‎dish concentrator. En-vironmental Science and Pollution Research, 30(22), 63121-63134.‎ https://doi.org/10.1007/s11356-023-26432-4
    37. ‎Muller-Steinhagen, H. (2013). Concentrating solar thermal power. Philosophical Transactions of the Royal Society A: Math-‎ematical, Physical and Engineering Sciences, 371(1996), 20110433.‎ https://doi.org/10.1098/rsta.2011.0433
    38. Sahu, S. K., K, A. S., & Natarajan, S. K. (2021). Electricity generation using solar parabolic dish system with thermoelectric ‎generator—an experi-mental investigation. Heat Transfer, 50(8), 7784-7797.‎ https://doi.org/10.1002/htj.22253
  • Downloads

  • How to Cite

    Patel, M. . ., & Vyas, S. R. . (2025). Design and Performance Analysis of A Parabolic Dish Solar‎A Concentrator for A Solar Thermal Power Plant. International Journal of Basic and Applied Sciences, 14(4), 75-83. https://doi.org/10.14419/a1xj2v69