On Vertex Eccentricity Labeled Energy of A Graph

  • Authors

    https://doi.org/10.14419/qtfv0860

    Received date: June 19, 2025

    Accepted date: August 7, 2025

    Published date: August 12, 2025

  • Eccentricity; Graph Energy; Vertex Eccentricity Labeled Energy
  • Abstract

    In this paper, we introduce a new spectral graph invariant called the Vertex Eccentricity Labeled Energy (VELE). VELE is derived from the ‎eigenvalues of the Vertex Eccentricity Labeled (VEL) matrix, whose off-diagonal entries for a connected graph G are defined as the sum of ‎eccentricities of vertex pairs, and zero otherwise. We explore fundamental algebraic and spectral properties of VELE, including its trace, ‎characteristic polynomial, and energy bounds. Closed-form formulas for VELE are provided for several classical graph families, such as ‎complete graphs, cycles, wheels, and stars. Additionally, the behavior of VELE is studied under common graph operations such as Cartesian product, splitting, and m-splitting, highlighting distinctive spectral patterns related to vertex eccentricity. These results expand the family ‎of spectral descriptors and offer new analytical tools in structural graph analysis‎.

  • References

    1. S. Akbari, S. Küçükçifçi, H. Saveh, E. Ş. Yazıcı, A lower bound for the energy of graphs in terms of the vertex cover number, Discrete Mathemat-ics 348 (2025) 114582. https://doi.org/10.1016/j.disc.2025.114582.
    2. R.B. Bapat, Graphs and Matrices, Springer, Berlin, 2010. https://doi.org/10.1007/978-1-84882-981-7.
    3. B. Batiha, M.S.M. Noorani, I. Hashim, Numerical simulation of the generalized Huxley equation by He's variational iteration method, Applied Mathematics and Computation 186 (2007) 1322–1325. https://doi.org/10.1016/j.amc.2006.07.166.
    4. D. Bonchev, D.H. Rouvray (Eds.), Chemical Graph Theory: Introduction and Fundamentals, Gordon & Breach, New York, 1991.
    5. Y. Chen, S. Liu, Z. Wang, Signless Laplacian energy and spectral radius of a graph, Discrete Applied Mathematics 378 (2026) 216–225. https://doi.org/10.1016/j.dam.2025.07.015.
    6. C.A. Coulson, On the calculation of the energy in molecular orbital theory, Proceedings of the Cambridge Philosophical Society 36 (1940) 201–203. https://doi.org/10.1017/S0305004100017175.
    7. C. Dede, New families of Laplacian borderenergetic graphs, Acta Informatica 61 (2024) 115–129. https://doi.org/10.1007/s00236-024-00454-y.
    8. J. Dong, Y. Yao, Some new bounds for the energy of graphs, Discrete Applied Mathematics 371 (2025) 73–79. https://doi.org/10.1016/j.dam.2025.03.022.
    9. H.A. Ganie, On the signless Laplacian energy of a digraph, Indian Journal of Pure and Applied Mathematics 56 (2025) 555–570. https://doi.org/10.1007/s13226-023-00502-2.
    10. I. Gutman, The energy of a graph, Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz 103 (1978) 1–22.
    11. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986. https://doi.org/10.1515/9783112570180.
    12. I. Gutman, D. Vidović, Hypoenergetic trees, Journal of Graph Theory 40 (2002) 1–8. https://doi.org/10.1002/jgt.10027.
    13. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra and Its Applications 414 (2006) 29–37. https://doi.org/10.1016/j.laa.2005.09.008.
    14. G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 60 (2008) 461–472.
    15. A. Harshitha, S. Nayak, S. D’Souza, Eccentricity Laplacian energy of a graph, Nanosystems: Physics, Chemistry, Mathematics 15(5) (2024) 567–575. https://doi.org/10.17586/2220-8054-2024-15-5-567-575.
    16. E. Hückel, Quantentheoretische Beiträge zum Benzolproblem, Zeitschrift für Physik 70 (1931) 204–286. https://doi.org/10.1007/BF01339530.
    17. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. https://doi.org/10.1017/CBO9780511840371.
    18. Z.U. Khan, X.-D. Zhang, On generalized distance spectral radius and generalized distance energy of graphs, Discrete Mathematics, Algorithms and Applications 15(8) (2023) 2250176. https://doi.org/10.1142/S1793830922501762.
    19. J. Koolen, V. Moulton, Maximal energy graphs, Advances in Applied Mathematics 26 (2001) 47–52. https://doi.org/10.1006/aama.2000.0705.
    20. X. Li, Y. Shi, A survey on the Randic index, MATCH Communications in Mathematical and in Computer Chemistry 59 (2008) 127–156.
    21. X. Li, W. Shiu, I. Gutman, Hypoenergetic and strongly hypoenergetic graphs, MATCH Communications in Mathematical and in Computer Chem-istry 48 (2003) 103–112.
    22. B. McClelland, The eigenvalues of a square matrix, with applications to chemistry, Journal of the Chemical Society A (1971) 513–516.
    23. B. McClelland, Properties of the characteristic polynomial of a graph, Journal of the Chemical Society, Faraday Transactions II 68 (1972) 1656–1661.
    24. B. Mohar, S. Poljak, Eigenvalues in combinatorial optimization, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1991–2042.
    25. L. Qiu, J. Li, J. Zhang, On the eccentricity energy and eccentricity spectral radius of graphs with odd diameter, RAIRO - Operations Research 57(6) (2023) 3141–3156. https://doi.org/10.1051/ro/2023168.
    26. O. Rojo, D. Soto, A survey of Laplacian energy of graphs, Linear and Multilinear Algebra 59 (2011) 73–97.
    27. V. Sharma, R. Goswami, A. Vijayakumar, Eccentricity energy of a graph, Applied Mathematics Letters 22 (2009) 867–871.
    28. N. Trinajstić, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, 1992.
  • Downloads

  • How to Cite

    Gusai, S., Kaneria, V., & Jadeja, M. (2025). On Vertex Eccentricity Labeled Energy of A Graph. International Journal of Basic and Applied Sciences, 14(4), 339-350. https://doi.org/10.14419/qtfv0860