POSE-Inclusive Face Recognition: Addressing The Influence of Face Angle in Person Identification
-
https://doi.org/10.14419/0jt7m549
Received date: June 18, 2025
Accepted date: July 17, 2025
Published date: July 27, 2025
-
Occluded Face Recognition; MTCNN; CNN -
Abstract
Face recognition remains a critical task in computer vision, especially in applications involving authentication, surveillance, and access control. However, real-world challenges like pose variations and occlusions continue to hinder recognition performance. This paper presents a pose-inclusive face recognition system that integrates Multi-task Cascaded Convolutional Networks (MTCNN) for face detection and alignment with ResNet-50 for feature extraction and classification. The Labeled Faces in the Wild (LFW) dataset is used, and images undergo data augmentation and normalization to simulate pose diversity. Experimental evaluation demonstrates that ResNet-50 significantly outperforms traditional CNN models, achieving an accuracy of 99.60%. The proposed approach ensures robust and scalable performance in uncontrolled environments.
-
References
- Santemiz, P., Spreeuwers, L. J., & Veldhuis, R. N. J. (2024). A survey on automatic face recognition using side-view face images. IET Biometrics, 2024(1), Article 7886911. https://doi.org/10.1049/2024/7886911.
- Rusia, M. K., Singh, D. K., & Ansari, M. A. (2024). A novel deep transfer learning-based approach for face pose estimation. Cybernetics and In-formation Technologies, 24(2), 105–119. https://doi.org/10.2478/cait-2024-0018.
- Naser, O. A., Syed Ahmad, S. M., Samsudin, K., & Hanafi, M. (2024). Enhancing 2D face recognition systems: Addressing yaw poses and occlu-sions with masks, glasses, and both. Advances in Artificial Intelligence and Machine Learning, 4(3), 2545–2574. https://doi.org/10.54364/AAIML.2024.43149.
- Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823. https://doi.org/10.1109/CVPR.2015.7298682.
- Na, I. S., Tran, C., Nguyen, D., & Dinh, S. (2020). Facial UV map completion for pose-invariant face recognition: A novel adversarial approach based on coupled attention residual UNets. Journal of Ambient Intelligence and Humanized Computing, 11(6), 2461–2472. https://doi.org/10.1186/s13673-020-00250-w.
- Hu, W. (2023). Improving 2D face recognition via fine-level facial depth generation and RGB-D complementary feature learning. arXiv.2305.04426arXiv.
- Kim, M., Su, Y., Liu, F., Jain, A., & Liu, X. (2024). KeyPoint relative position encoding for face recognition. Proceedings of the IEEE/CVF Con-ference on Computer Vision and Pattern Recognition (CVPR), 244–255. https://doi.org/10.1109/CVPR52733.2024.00031.
- Ruan, S., Tang, C., Zhou, X., Jin, Z., Chen, S., Wen, H., Liu, H., & Tang, D. (2020). Multi-pose face recognition based on deep learning in uncon-strained scenes. Applied Sciences, 10(13), 4669. https://doi.org/10.3390/app10134669.
- Essel, J. K., Mensah, J. A., Ocran, E., & Asiedu, L. (2024). On the search for efficient face recognition algorithm subject to multiple environ-mental constraints. Heliyon, 10(7), Article e28568. https://doi.org/10.1016/j.heliyon.2024.e28568.
- Tsai, E.-J., & Yeh, W.-C. (2021). PAM: Pose Attention Module for pose-invariantfacerecognition.arXiv.
- Meng, Q., Xu, X., Wang, X., Qian, Y., Qin, Y., Wang, Z., Zhao, C., Zhou, F., & Lei, Z. (2021). PoseFace: Pose-invariant features and pose-adaptive loss for face recognition. arXiv.
- Pitteri, G., Munaro, M., & Menegatti, E. (2017). Depth-based frontal view generation for pose invariant face recognition with consumer RGB-D sensors. In Intelligent Autonomous Systems 14 (pp. 925–937). Springer. https://doi.org/10.1007/978-3-319-48036-7_67.
- Cao, K., Rong, Y., Li, C., Tang, X., & Loy, C. C. (2018). Pose-robust face recognition via deep residual equivariant mapping. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, 1085–1094.
- Ge, S., Li, C., Zhao, S., & Zeng, D. (2020). Occluded face recognition in the wild by identity-diversity inpainting. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3387–3397. https://doi.org/10.1109/TCSVT.2020.2967754.
- Cen, F., & Qi, G.-J. (2018). Dictionary representation of deep features for occlusion-robust face recognition. IEEE Access, 6, 73925–73934.
- Neto, P. C., Boutros, F., Pinto, J. R., Damer, N., Sequeira, A. F., & Cardoso, J. S. (2021). Focus Face: Multi-task contrastive learning for masked face recognition. Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 1–8. https://doi.org/10.1109/FG52635.2021.9666792.
- Noyes, E., Davis, J. P., Petrov, N., Gray, K. L. H., & Ritchie, K. (2021). The effect of face masks and sunglasses on identity and expression recognition with super-recognizers and typical observers. Royal Society Open Science, 8(3), Article 201169. https://doi.org/10.1098/rsos.201169.
- Naser, O. A., Mumtazah, S., Hanafi, M., & Samsudin, K. (2024). Enhancing 2D face recognition systems: Addressing yaw poses and occlusions with masks, glasses, and both. Multimedia Tools and Applications, 83(5), 1–26. https://doi.org/10.54364/AAIML.2024.43149.
- Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for deep face recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4690–4699. https://doi.org/10.1109/CVPR.2019.00482.
- Cament, L. A., Galdames, F. J., Bowyer, K. W., & Pérez, C. A. (2015). Face recognition under pose variation with local Gabor features enhanced by Active Shape and Statistical Models. Pattern Recognition, 48(11), 3371–3384. https://doi.org/10.1016/j.patcog.2015.05.017.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vi-sion and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90.
- Huang, G. B., Jain, V., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained envi-ronments. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1–8.
- Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig-nal Processing Letters, 23(10), 1499–150. https://doi.org/10.1109/LSP.2016.2603342.
-
Downloads
-
How to Cite
Harshitha, C. J. ., Bharathi, R. K. ., & P, R. . (2025). POSE-Inclusive Face Recognition: Addressing The Influence of Face Angle in Person Identification. International Journal of Basic and Applied Sciences, 14(3), 311-316. https://doi.org/10.14419/0jt7m549
