Temporal Authentication Model for The Internet of Things Edge Devices for Sustainable User Privacy
-
https://doi.org/10.14419/8jbh3a60
Received date: June 17, 2025
Accepted date: October 15, 2025
Published date: November 6, 2025
-
Device Authentication; Federated Learning; IoT-Edge; User Privacy -
Abstract
Internet of Things (IoT) integrated edge devices are used in different real-time applications for providing cloud-based services to the users. As security issues are open in such integrated device platforms, the need for device authentication and user privacy is mandatory. This article, therefore, introduces a Temporal Authentication Model (TAM) for IoT-edge devices to sustain user privacy demands. The proposed model employs distributed federated learning to validate authentication and revocation processes under different sharing intervals. A temporal factor is used to validate the authentication sustainability without key changes across the sharing intervals. This temporal factor is used to decide the authentication or revocation for different devices. The distributed federated learning verifies the balance between these two processes to ensure maximum authentication. Thus, the proposed TAM improves the authentication rate by 11.39% and reduces the revocation failure by 11.39%, authentication time by 12.44%, and complexity by 11.61% for the operation time.
-
References
- Halgamuge, M. N., & Niyato, D. (2025). Adaptive edge security framework for dynamic IoT security policies in diverse environments. Computers & Security, 148, 104128. https://doi.org/10.1016/j.cose.2024.104128.
- Pawlicki, M., Pawlicka, A., Kozik, R., & Choraś, M. (2023). The survey and meta-analysis of the attacks, transgressions, countermeasures and secu-rity aspects common to the Cloud, Edge and IoT. Neurocomputing, 551, 126533. https://doi.org/10.1016/j.neucom.2023.126533.
- Javadi, A., Sadeghi, S., Pahlevani, P., Bagheri, N., Rostampour, S., & Bendavid, Y. (2025). Secure and Efficient Lightweight Authentication Pro-tocol (SELAP) for multi-sector IoT applications. Internet of Things, 101499. https://doi.org/10.1016/j.iot.2025.101499.
- Li, S., Zhang, H., Shi, H., Ma, M., & Wang, C. (2024). A novel blockchain-enabled zero-trust-based authentication scheme in power IoT environ-ments. The Journal of Supercomputing, 80(14), 20682-20714. https://doi.org/10.1007/s11227-024-06262-y.
- Khan, M., Hatami, M., Zhao, W., & Chen, Y. (2024). A novel trusted hardware-based scalable security framework for IoT edge devices. Discover Internet of Things, 4(1), 4. https://doi.org/10.1007/s43926-024-00056-7.
- Liu, M., Lu, N., Wen, Y., Cheng, Q., & Shi, W. (2023). Sea: Secure and efficient public auditing for edge-assisted IoT aggregated data sharing. Mobile Networks and Applications, 1-12. https://doi.org/10.1007/s11036-023-02146-2.
- Zhonghua, C., Goyal, S. B., & Rajawat, A. S. (2024). Smart contracts attribute-based access control model for security & privacy of IoT system using blockchain and edge computing. The Journal of Supercomputing, 80(2), 1396-1425. https://doi.org/10.1007/s11227-023-05517-4.
- Jiang, N., Zhai, Y., Wang, Y., Yin, X., Yang, S., & Xu, P. (2024). Location Privacy Protection for the Internet of Things with Edge Computing Based on Clustering K-Anonymity. Sensors (Basel, Switzerland), 24(18), 6153. https://doi.org/10.3390/s24186153.
- Chen, Z., Deng, Y., Yang, M., Wu, X., Wang, X., & Wei, P. (2025). Privacy-Preserving Dynamic Spatial Keyword Query Scheme with Multi-Attribute Cost Constraints in Cloud–Edge Collaboration. Electronics, 2079-9292, 14(5). https://doi.org/10.3390/electronics14050897.
- Wang, J., & Li, J. (2024). Blockchain and access control encryption-empowered IoT knowledge sharing for cloud-edge orchestrated personalized privacy-preserving federated learning. Applied Sciences, 14(5), 1743. https://doi.org/10.3390/app14051743.
- Nakkar, M., AlTawy, R., & Youssef, A. (2022). GASE: A lightweight group authentication scheme with key agreement for edge computing appli-cations. IEEE Internet of Things Journal, 10(1), 840-854. https://doi.org/10.1109/JIOT.2022.3204335.
- Seifelnasr, M., AlTawy, R., Youssef, A., & Ghadafi, E. (2023). Privacy-Preserving Mutual Authentication Protocol with Forward Secrecy for IoT–Edge–Cloud. IEEE Internet of Things Journal, 11(5), 8105-8117. https://doi.org/10.1109/JIOT.2023.3318180.
- Alruwaili, O., Tanveer, M., Aldossari, S. A., Alanazi, S., & Armghan, A. (2025). RAAF-MEC: Reliable and anonymous authentication framework for IoT-enabled mobile edge computing environment. Internet of Things, 29, 101459. https://doi.org/10.1016/j.iot.2024.101459.
- Tanveer, M., & Aldossari, S. A. (2025). RAM-MEN: Robust authentication mechanism for IoT-enabled edge networks. Alexandria Engineering Journal, 112, 436-447. https://doi.org/10.1016/j.aej.2024.10.116.
- Zhang, S., & Cao, D. (2024). A blockchain-based provably secure anonymous authentication for edge computing-enabled IoT. The Journal of Su-percomputing, 80(5), 6778-6808. https://doi.org/10.1007/s11227-023-05696-0.
- Zhao, G., Chen, H., & Wang, J. (2024). An edge-assisted group authentication scheme for the narrowband internet of things. Complex & Intelligent Systems, 10(5), 6597-6618. https://doi.org/10.1007/s40747-024-01514-z.
- Maiti, A., & Kist, A. A. (2025). A Zero-Trust Multi-Processor Reporter-Verifier Design of Edge Devices for Firmware Authenticity in Internet of Things and Blockchain Applications. Journal of Sensor and Actuator Networks, 14(2), 35. https://doi.org/10.3390/jsan14020035.
- Zhang, J., Ouda, A., & Abu-Rukba, R. (2024). Authentication and key agreement protocol in hybrid edge–fog–cloud computing enhanced by 5G networks. Future Internet, 16(6), 209. https://doi.org/10.3390/fi16060209.
- Shang, W., Wen, X., Chen, Z., Xiong, W., Chang, Z., & Cao, Z. (2024). Lightweight authentication scheme for edge control systems in Industrial Internet of Things. Frontiers of Information Technology & Electronic Engineering, 25(11), 1466-1478. https://doi.org/10.1631/FITEE.2400497.
- Al-Shatari, M., Hussin, F. A., Aziz, A. A., Eisa, T. A. E., & Tran, X. T. (2023). IoT Edge Device Security: An Efficient Lightweight Authenticated Encryption Scheme Based on LED and PHOTON. Applied Sciences, 13(18), 10345. https://doi.org/10.3390/app131810345.
- Shahidinejad, A., & Abawajy, J. (2023). Decentralized lattice-based device-to-device authentication for the edge-enabled IoT. IEEE Systems Jour-nal, 17(4), 6623-6633. https://doi.org/10.1109/JSYST.2023.3319280.
- Cunha, T. B. D., Kiran, M., Ranjan, R., & Vasilakos, A. V. (2024). Physical unclonable functions and QKD-based authentication scheme for IoT devices using blockchain. Internet of Things, 28, 101404. https://doi.org/10.1016/j.iot.2024.101404.
- Liu, S., Zhu, L., Zhang, W., Miao, Y., Leng, T., & Choo, K. K. R. (2024). Accuracy-Improved Privacy-Preserving Asynchronous Federated Learn-ing in IoT. IEEE Internet of Things Journal. https://doi.org/10.1016/j.iot.2024.101404.
- Zhang, T., Jiang, M., Luo, F., & Guo, Y. (2025). A lattice-based puncturable CP-ABE scheme with forward security for cloud-assisted IoT. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2025.3559567.
- Li, G., Lei, H., Liu, F., Li, L., & Jin, H. (2025). AEPPFL: Accurate and efficient privacy protection federal learning in industrial IoT. IEEE Internet of things journal. https://doi.org/10.1109/JIOT.2025.3562064.
- Wang, B., Wang, Y., Guo, Q., Lin, Y., & Yu, Y. (2024). Preventive audits for data applications before data sharing in the power IoT. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2024.3483929.
- Islam, M., Rehmani, M. H., Gao, L., & Chen, J. (2025). An optimized privacy-utility trade-off framework for differentially private data sharing in blockchain-based internet of things. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2025.3530247.
- https://www.unb.ca/cic/datasets/iotdataset-2023.html.
-
Downloads
-
How to Cite
M. , J., Karuppasamy , K. ., Bhuvaneswari , T. ., Kannan , L. M. ., K. , D. ., & Lakshmi , S. V. . (2025). Temporal Authentication Model for The Internet of Things Edge Devices for Sustainable User Privacy. International Journal of Basic and Applied Sciences, 14(7), 204-212. https://doi.org/10.14419/8jbh3a60
