Analytical Solution of Linear Second-Order Non-Homogeneous Fuzzy Partial Differential Equations Using The Fuzzy Sumudu Transform Under Generalized Hukuhara Differentiability
-
https://doi.org/10.14419/g9arya79
Received date: June 16, 2025
Accepted date: August 21, 2025
Published date: September 2, 2025
-
Strongly Generalized Hukuhara Differentiability; Fuzzy Sumudu Transform; Initial and Boundary Conditions; Non-Linear Differential Equation; Non-Homogeneous Fuzzy Partial Differential Equation. -
Abstract
In this paper, a linear second-order non-homogeneous fuzzy partial differential equation (FPDE) is constructed, and the Fuzzy Sumudu Transform (FST) method is applied to solve FPDEs within the context of generalized Hukuhara(gH) differentiability technique. The use of FST, a potent integral transform renowned for its scale-invariant and unit-preserving characteristics, to the fuzzy setting is expanded. FPDEs are solved analytically by transforming them into more straightforward algebraic differential equations in the transform domain, utilizing recent advances in the gH-differentiability technique. Initially, the basic characteristics of linear second-order non-homogeneous FPDEs are presented. To highlight the capabilities, a numerical example is provided.
-
References
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- Karlin, S., & Ziegler, Z. (1966). Chebyshevian spline functions. Siam Journal on Numerical Analysis, 3(3), 514-543. https://doi.org/10.1137/0703044.
- Widder, D. V. (1971). An introduction to transform theory (Vol. 42). Academic Press.
- Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications,91(2), 552-558. https://doi.org/10.1016/0022-247X(83)90169-5
- Kaleva, O. (1987). Fuzzy differential equations. Fuzzy sets and systems, 24(3), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
- Guang-Quan, Z. (1991). Fuzzy continuous function and its properties. Fuzzy sets and systems, 43(2), 159-171. https://doi.org/10.1016/0165-0114(91)90074-Z
- Watugala, G. K. (1993). Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Integrated Education, 24(1), 35-43. https://doi.org/10.1080/0020739930240105
- Weerakoon, S. (1994). Application of Sumudu transform to partial differential equations. International Journal of Mathematical Education in Sci-ence and Technology, 25(2), 277-283. https://doi.org/10.1080/0020739940250214
- Ma, M., Friedman, M., & Kandel, A. (1999). Numerical solutions of fuzzy differential equations. Fuzzy sets and systems, 105(1), 133-138. https://doi.org/10.1016/S0165-0114(97)00233-9
- Friedman, M., Ma, M., & Kandel, A. (1999). Numerical solutions of fuzzy differential and integral equations. Fuzzy sets and Systems, 106(1), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8
- Buckley, J. J., & Feuring, T. (1999). Introduction to fuzzy partial differential equations. Fuzzy sets and systems, 105(2), 241-248. https://doi.org/10.1016/S0165-0114(98)00323-6
- Buckley, J. J., & Feuring, T. (2000). Fuzzy differential equations. Fuzzy sets and Systems, 110(1), 43-54. https://doi.org/10.1016/S0165-0114(98)00141-9
- Buckley, J. J., & Feuring, T. (2001). Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy sets and systems, 121(2), 247-255. https://doi.org/10.1016/S0165-0114(00)00028-2
- Belgacem, F. B. M., Karaballi, A. A., & Kalla, S. L. (2003). Analytical investigations of the Sumudu transform and applications to integral produc-tion equations. Mathematical problems in Engineering, 2003(3), 103-118. https://doi.org/10.1155/S1024123X03207018
- Bede, B., & Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number- valued functions with applications to fuzzy differential equations. Fuzzy sets and systems, 151(3), 581-599. https://doi.org/10.1016/j.fss.2004.08.001
- Belgacem, F. B. M., & Karaballi, A. A. (2006). Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis, 2006(1), 091083. https://doi.org/10.1155/JAMSA/2006/91083
- Bede, B., Rudas, I. J., & Bencsik, A. L. (2007). First order linear fuzzy differential equations under generalized differentiability. Information sci-ences, 177(7), 1648-1662. https://doi.org/10.1016/j.ins.2006.08.021
- Chalco-Cano, Y., & Roman-Flores, H. (2008). On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38(1), 112-119. https://doi.org/10.1016/j.chaos.2006.10.043
- Eltayeb, H., & Kilicman, A. (2010). A note on the Sumudu transforms and differential equations. Applied Mathematical Sciences, 4(22), 1089-1098.
- Salahshour, S., Allahviranloo, T., & Abbasbandy, S. (2012). Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Communi-cations in Nonlinear Science and Numerical Simulation, 17(3), 1372-1381. https://doi.org/10.1016/j.cnsns.2011.07.005
- Khastan, A., &Nieto, J. J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis: Theory, Methods & Applications, 72(9-10), 3583-3593. https://doi.org/10.1016/j.na.2009.12.038
- Rahman, N. A. A., & Ahmad, M. Z. (2015). Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations. Entropy, 17(7), 4582-4601. https://doi.org/10.3390/e17074582
- Rahman, N. A., & Ahmad, M. Z. (2016). Fuzzy Sumudu transform for solving fuzzy partial differential equations. J. Nonlinear Sci. Appl, 9, 3226-3239. https://doi.org/10.22436/jnsa.009.05.111
- Rahman, N. A. A., & Ahmad, M. Z. (2017). Solving fuzzy Volterra integral equations via fuzzy Sumudu transform. Applied Mathematics and Computational Intelligence (AMCI), 6, 19-28.
- Jafari, R., & Razvarz, S. (2018). Solution of fuzzy differential equations using fuzzy Sumudu transforms. Mathematical and Computational Appli-cations, 23(1), 5. https://doi.org/10.3390/mca23010005
- Hassan, R. H., & Abbas, Y. M. (2018). Fuzzy Sumudu transforms of the fuzzy Riemann-Liouville fractional derivatives about order. International Journal of Engineering and Technology, 7(4), 363-367.
- Chehlabi, M., & Allahviranloo, T. (2018). Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized dif-ferentiability. Applied Soft Computing, 70, 359-370. https://doi.org/10.1016/j.asoc.2018.05.040
- Mazandarani, M., & Xiu, L. (2021). A review on fuzzy differential equations. IEEE access, 9, 62195-62211. https://doi.org/10.1109/ACCESS.2021.3074245
- Sahni, M., Parikh, M., & Sahni, R. (2021). Sumudu transform for solving ordinary differential equation in a fuzzy environment. Journal of Interdis-ciplinary Mathematics, 24(6), 1565-1577. https://doi.org/10.1080/09720502.2020.1845468
- Alidema, A. F. (2022). Applications of double fuzzy sumudu adomain decompositon method for two-dimensional volterra fuzzy integral equations. European Journal of Pure and Applied Mathematics, 15(3), 1363-1375. https://doi.org/10.29020/nybg.ejpam.v15i3.4470
- Ghaffari, M., Allahviranloo, T., Abbasbandy, S., & Azhini, M. (2022). Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations. Soft Computing, 26(5), 2135-2146. https://doi.org/10.1007/s00500-021-06637-w
- Muna, I., Aml, A., &Elbhilil, N. A. Fuzzy Sumudu Transform for Solving Second Order Fuzzy Initial Value Problem under Generalized Differenti-ability.
- Divya, B., & Ganesan, K. (2025). Solution of Second Order Fuzzy Differential Equations using Sumudu Transform under Neutrosophic Environ-ment. International Journal of Neutrosophic Science (IJNS), 26(1). https://doi.org/10.54216/IJNS.260107
- Rahman, N. A., & Ahmad, M. Z. (2025). Fuzzy Sumudu Transform for System of Fuzzy Differential Equations with Fuzzy Constant Coefficients. Iranian Journal of Mathematical Sciences & Informatics, 20(1). https://doi.org/10.61186/ijmsi.20.1.79
- Singh K.P. & Borgoyary S(2016), Rate of Convergence of Sine Imprecise Functions, I.J. Intelligent Systems and Applications, 8(10), pp.31-43, https://doi.org/10.5815/ijisa.2016.10.04
-
Downloads
-
How to Cite
Basumatary, M., & Borgoyary, S. (2025). Analytical Solution of Linear Second-Order Non-Homogeneous Fuzzy Partial Differential Equations Using The Fuzzy Sumudu Transform Under Generalized Hukuhara Differentiability. International Journal of Basic and Applied Sciences, 14(5), 58-75. https://doi.org/10.14419/g9arya79
