Analytical Solution of Linear Second-Order Non-Homogeneous ‎Fuzzy Partial Differential Equations Using The Fuzzy Sumudu ‎Transform Under Generalized Hukuhara Differentiability

  • Authors

    • Mary Basumatary Department of Mathematics, Central Institute of Technology Kokrajhar, Assam 783370, India
    • Sahalad Borgoyary Department of Mathematics, Central Institute of Technology Kokrajhar, Assam 783370, India
    https://doi.org/10.14419/g9arya79

    Received date: June 16, 2025

    Accepted date: August 21, 2025

    Published date: September 2, 2025

  • Strongly Generalized Hukuhara Differentiability; Fuzzy Sumudu Transform; Initial and Boundary Conditions; Non-Linear Differential ‎Equation; Non-Homogeneous Fuzzy Partial Differential Equation.‎
  • Abstract

    In this paper, a linear second-order non-homogeneous fuzzy partial differential equation (FPDE) is constructed, and the Fuzzy Sumudu ‎Transform (FST) method is applied to solve FPDEs within the context of generalized Hukuhara(gH) differentiability technique. The use ‎of FST, a potent integral transform renowned for its scale-invariant and unit-preserving characteristics, to the fuzzy setting is expanded. ‎FPDEs are solved analytically by transforming them into more straightforward algebraic differential equations in the transform domain, ‎utilizing recent advances in the gH-differentiability technique. Initially, the basic characteristics of linear second-order non-homogeneous FPDEs are presented. To highlight the capabilities, a numerical example is provided.

  • References

    1. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
    2. Karlin, S., & Ziegler, Z. (1966). Chebyshevian spline functions. Siam Journal on Numerical Analysis, 3(3), 514-543. https://doi.org/10.1137/0703044.
    3. Widder, D. V. (1971). An introduction to transform theory (Vol. 42). Academic Press.
    4. Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications,91(2), 552-558. https://doi.org/10.1016/0022-247X(83)90169-5
    5. Kaleva, O. (1987). Fuzzy differential equations. Fuzzy sets and systems, 24(3), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
    6. Guang-Quan, Z. (1991). Fuzzy continuous function and its properties. Fuzzy sets and systems, 43(2), 159-171. https://doi.org/10.1016/0165-0114(91)90074-Z
    7. Watugala, G. K. (1993). Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Integrated Education, 24(1), 35-43. https://doi.org/10.1080/0020739930240105
    8. Weerakoon, S. (1994). Application of Sumudu transform to partial differential equations. International Journal of Mathematical Education in Sci-ence and Technology, 25(2), 277-283. https://doi.org/10.1080/0020739940250214
    9. Ma, M., Friedman, M., & Kandel, A. (1999). Numerical solutions of fuzzy differential equations. Fuzzy sets and systems, 105(1), 133-138. https://doi.org/10.1016/S0165-0114(97)00233-9
    10. Friedman, M., Ma, M., & Kandel, A. (1999). Numerical solutions of fuzzy differential and integral equations. Fuzzy sets and Systems, 106(1), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8
    11. Buckley, J. J., & Feuring, T. (1999). Introduction to fuzzy partial differential equations. Fuzzy sets and systems, 105(2), 241-248. https://doi.org/10.1016/S0165-0114(98)00323-6
    12. Buckley, J. J., & Feuring, T. (2000). Fuzzy differential equations. Fuzzy sets and Systems, 110(1), 43-54. https://doi.org/10.1016/S0165-0114(98)00141-9
    13. Buckley, J. J., & Feuring, T. (2001). Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy sets and systems, 121(2), 247-255. https://doi.org/10.1016/S0165-0114(00)00028-2
    14. Belgacem, F. B. M., Karaballi, A. A., & Kalla, S. L. (2003). Analytical investigations of the Sumudu transform and applications to integral produc-tion equations. Mathematical problems in Engineering, 2003(3), 103-118. https://doi.org/10.1155/S1024123X03207018
    15. Bede, B., & Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number- valued functions with applications to fuzzy differential equations. Fuzzy sets and systems, 151(3), 581-599. https://doi.org/10.1016/j.fss.2004.08.001
    16. Belgacem, F. B. M., & Karaballi, A. A. (2006). Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis, 2006(1), 091083. https://doi.org/10.1155/JAMSA/2006/91083
    17. Bede, B., Rudas, I. J., & Bencsik, A. L. (2007). First order linear fuzzy differential equations under generalized differentiability. Information sci-ences, 177(7), 1648-1662. https://doi.org/10.1016/j.ins.2006.08.021
    18. Chalco-Cano, Y., & Roman-Flores, H. (2008). On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38(1), 112-119. https://doi.org/10.1016/j.chaos.2006.10.043
    19. Eltayeb, H., & Kilicman, A. (2010). A note on the Sumudu transforms and differential equations. Applied Mathematical Sciences, 4(22), 1089-1098.
    20. Salahshour, S., Allahviranloo, T., & Abbasbandy, S. (2012). Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Communi-cations in Nonlinear Science and Numerical Simulation, 17(3), 1372-1381. https://doi.org/10.1016/j.cnsns.2011.07.005
    21. Khastan, A., &Nieto, J. J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis: Theory, Methods & Applications, 72(9-10), 3583-3593. https://doi.org/10.1016/j.na.2009.12.038
    22. Rahman, N. A. A., & Ahmad, M. Z. (2015). Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations. Entropy, 17(7), 4582-4601. https://doi.org/10.3390/e17074582
    23. Rahman, N. A., & Ahmad, M. Z. (2016). Fuzzy Sumudu transform for solving fuzzy partial differential equations. J. Nonlinear Sci. Appl, 9, 3226-3239. https://doi.org/10.22436/jnsa.009.05.111
    24. Rahman, N. A. A., & Ahmad, M. Z. (2017). Solving fuzzy Volterra integral equations via fuzzy Sumudu transform. Applied Mathematics and Computational Intelligence (AMCI), 6, 19-28.
    25. Jafari, R., & Razvarz, S. (2018). Solution of fuzzy differential equations using fuzzy Sumudu transforms. Mathematical and Computational Appli-cations, 23(1), 5. https://doi.org/10.3390/mca23010005
    26. Hassan, R. H., & Abbas, Y. M. (2018). Fuzzy Sumudu transforms of the fuzzy Riemann-Liouville fractional derivatives about order. International Journal of Engineering and Technology, 7(4), 363-367.
    27. Chehlabi, M., & Allahviranloo, T. (2018). Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized dif-ferentiability. Applied Soft Computing, 70, 359-370. https://doi.org/10.1016/j.asoc.2018.05.040
    28. Mazandarani, M., & Xiu, L. (2021). A review on fuzzy differential equations. IEEE access, 9, 62195-62211. https://doi.org/10.1109/ACCESS.2021.3074245
    29. Sahni, M., Parikh, M., & Sahni, R. (2021). Sumudu transform for solving ordinary differential equation in a fuzzy environment. Journal of Interdis-ciplinary Mathematics, 24(6), 1565-1577. https://doi.org/10.1080/09720502.2020.1845468
    30. Alidema, A. F. (2022). Applications of double fuzzy sumudu adomain decompositon method for two-dimensional volterra fuzzy integral equations. European Journal of Pure and Applied Mathematics, 15(3), 1363-1375. https://doi.org/10.29020/nybg.ejpam.v15i3.4470
    31. Ghaffari, M., Allahviranloo, T., Abbasbandy, S., & Azhini, M. (2022). Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations. Soft Computing, 26(5), 2135-2146. https://doi.org/10.1007/s00500-021-06637-w
    32. Muna, I., Aml, A., &Elbhilil, N. A. Fuzzy Sumudu Transform for Solving Second Order Fuzzy Initial Value Problem under Generalized Differenti-ability.
    33. Divya, B., & Ganesan, K. (2025). Solution of Second Order Fuzzy Differential Equations using Sumudu Transform under Neutrosophic Environ-ment. International Journal of Neutrosophic Science (IJNS), 26(1). https://doi.org/10.54216/IJNS.260107
    34. Rahman, N. A., & Ahmad, M. Z. (2025). Fuzzy Sumudu Transform for System of Fuzzy Differential Equations with Fuzzy Constant Coefficients. Iranian Journal of Mathematical Sciences & Informatics, 20(1). https://doi.org/10.61186/ijmsi.20.1.79
    35. Singh K.P. & Borgoyary S(2016), Rate of Convergence of Sine Imprecise Functions, I.J. Intelligent Systems and Applications, 8(10), pp.31-43, https://doi.org/10.5815/ijisa.2016.10.04
  • Downloads

  • How to Cite

    Basumatary, M., & Borgoyary, S. (2025). Analytical Solution of Linear Second-Order Non-Homogeneous ‎Fuzzy Partial Differential Equations Using The Fuzzy Sumudu ‎Transform Under Generalized Hukuhara Differentiability. International Journal of Basic and Applied Sciences, 14(5), 58-75. https://doi.org/10.14419/g9arya79