Application of Facial Expression Using YOLOv11 to Measure Interest in Training Materials
-
https://doi.org/10.14419/vxgf1w29
Received date: June 13, 2025
Accepted date: July 16, 2025
Published date: August 1, 2025
-
Facial Expression Recognition; YOLOv11; Interest Detection; Training Materials Evaluation; Deep Learning in Education -
Abstract
The purpose of this study is to assess trainees' proficiency with the Convolutional Neural Network (CNN) model in recognizing emotions from facial expressions. A wide range of applications in training, education, and human-machine interaction could benefit greatly from computer vision-based emotion recognition. A CNN model created especially to identify important emotions including happiness, sadness, anger, and fear is trained and tested in this study using a dataset of facial expressions. The test findings demonstrate that the CNN model can accurately and efficiently classify emotions and offer valuable information about trainees' strengths and limitations in identifying different emotions. This study emphasizes how CNN-based technology may be used to help assess and enhance emotion recognition skills in the setting of professional training.
-
References
- Ajlouni, N., Özyavaş, A., Ajlouni, F., Takaoğlu, F., & Takaoğlu, M. (2025). Enhanced hybrid facial emotion detection & classification. Franklin Open, 10, 100200. https://doi.org/10.1016/j.fraope.2024.100200.
- Ali, M. L., & Zhang, Z. (2024). The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detec-tion. Computers, 13(12). https://doi.org/10.3390/computers13120336.
- Aresa Latumahina, M., Santoso, H., & Wasito, I. (2023). Emotion Recognition System Using Autoencoder + CNN + Attention. 10(4), 150–161.
- Avital, N., Egel, I., Weinstock, I., & Malka, D. (2024). Enhancing Real-Time Emotion Recognition in Classroom Environments Using Convolution-al Neural Networks: A Step Towards Optical Neural Networks for Advanced Data Processing. Inventions, 9(6). https://doi.org/10.3390/inventions9060113.
- Chen, M., Liang, X., & Xu, Y. (2022). Construction and Analysis of Emotion Recognition and Psychotherapy System of College Students under Convolutional Neural Network and Interactive Technology. Computational Intelligence and Neuroscience, 2022(1), 5993839. https://doi.org/10.1155/2022/5993839.
- Chutia, T., & Baruah, N. (2024). A review on emotion detection by using deep learning techniques. In Artificial Intelligence Review (Vol. 57, Issue 8). Springer Netherlands. https://doi.org/10.1007/s10462-024-10831-1.
- Dada, E., Oyewola, D., Joseph, S., Emebo, O., & Oluwagbemi, O. (2023). Facial Emotion Recognition and Classification Using the Convolutional Neural Network-10 (CNN-10). Applied Computational Intelligence and Soft Computing, 2023, 19. https://doi.org/10.1155/2023/2457898.
- Elsheikh, R. A., Mohamed, M. A., Abou-Taleb, A. M., & Ata, M. M. (2024). Improved facial emotion recognition model based on a novel deep convolutional structure. Scientific Reports, 14(1), 1–31. https://doi.org/10.1038/s41598-024-79167-8.
- Gheorghe, C., Duguleana, M., Boboc, R. G., & Postelnicu, C. C. (2024). Analyzing Real-Time Object Detection with YOLO Algorithm in Auto-motive Applications: A Review. CMES - Computer Modeling in Engineering and Sciences, 141(3), 1939–1981. https://doi.org/10.32604/cmes.2024.054735.
- Hakim, G., Simangunsong, G., Ningrat, R., Rabika, J., Rusafni, M., Giri, E., & Mindara, G. (2024). Real-Time Facial Emotion Detection Applica-tion with Image Processing Based on Convolutional Neural Network (CNN). International Journal of Electrical Engineering, Mathematics and Computer Science, 1, 27–36. https://doi.org/10.62951/ijeemcs.v1i4.123.
- J. Sheril Angel A. Diana Andrushia, T. M. N. O. A. L. S. N. A. (2024). Faster Region Convolutional Neural Network (FRCNN) Based Facial Emo-tion Recognition. Computers, Materials & Continua, 79(2), 2427–2448. https://doi.org/10.32604/cmc.2024.047326.
- Jeon, Y.-D., Kang, M.-J., Kuh, S.-U., Cha, H.-Y., Kim, M.-S., You, J.-Y., Kim, H.-J., Shin, S.-H., Chung, Y.-G., & Yoon, D.-K. (2024). Deep Learning Model Based on You Only Look Once Algorithm for Detection and Visualization of Fracture Areas in Three-Dimensional Skeletal Imag-es. Diagnostics, 14(1). https://doi.org/10.3390/diagnostics14010011.
- Kang, S., Hu, Z., Liu, L., Zhang, K., & Cao, Z. (2025). Object Detection YOLO Algorithms and Their Industrial Applications: Overview and Comparative Analysis. Electronics, 14(6). https://doi.org/10.3390/electronics14061104.
- Kaur, M., & Kumar, M. (2024). Facial emotion recognition: A comprehensive review. Expert Systems, 41(10), e13670. https://doi.org/10.1111/exsy.13670.
- Khare, S. K., Blanes-Vidal, V., Nadimi, E. S., & Acharya, U. R. (2024). Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations. Information Fusion, 102, 102019. https://doi.org/10.1016/j.inffus.2023.102019.
- Kopalidis, T., Solachidis, V., Vretos, N., & Daras, P. (2024). Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information, 15(3). https://doi.org/10.3390/info15030135.
- Krishna, B. H., Sharon Rose Victor, J., Rao, G. S., Babu, C. R. K., Raju, K. S., Basha, T. S. G., & Reddy, V. B. S. (2024). Emotion-net: Automatic emotion recognition system using optimal feature selection-based hidden markov CNN model. Ain Shams Engineering Journal, 15(12), 103038. https://doi.org/10.1016/j.asej.2024.103038.
- Kurniadi, W., & M. Ridho Mahaputra. (2021). Determination of Communication in the Organization: Non Verbal, Oral and Written (Literature Re-view). Journal of Law, Politic and Humanities, 1(4), 164–172. https://doi.org/10.38035/jlph.v1i4.80.
- Li, C., Shi, Y., & Yi, X. (2021). Video emotion recognition based on Convolutional Neural Networks. Journal of Physics: Conference Series, 1738, 12129. https://doi.org/10.1088/1742-6596/1738/1/012129.
- Machová, K., Szabóova, M., Paralič, J., & Mičko, J. (2023). Detection of emotion by text analysis using machine learning. Frontiers in Psychology, 14(September). https://doi.org/10.3389/fpsyg.2023.1190326.
- Manalu, H. V., & Rifai, A. P. (2024). Detection of human emotions through facial expressions using hybrid convolutional neural network-recurrent neural network algorithm. Intelligent Systems with Applications, 21, 200339. https://doi.org/10.1016/j.iswa.2024.200339.
- Narigina, M., Romanovs, A., & Merkuryev, Y. (2024). Convolutional Neural Network-Based Digital Diagnostic Tool for the Identification of Psy-chosomatic Illnesses. Algorithms, 17(8). https://doi.org/10.3390/a17080329.
- Nita, S., Bitam, S., Heidet, M., & Mellouk, A. (2022). A new data augmentation convolutional neural network for human emotion recognition based on ECG signals. Biomedical Signal Processing and Control, 75, 103580. https://doi.org/10.1016/j.bspc.2022.103580.
- Pavel, M. S., Moldovanu, S., & Aiordachioaie, D. (2025). On Classification of the Human Emotions from Facial Thermal Images: A Case Study Based on Machine Learning. Machine Learning and Knowledge Extraction, 7(2). https://doi.org/10.3390/make7020027.
- Qian, C., Lobo Marques, J. A., de Alexandria, A. R., & Fong, S. J. (2025). Application of Multiple Deep Learning Architectures for Emotion Clas-sification Based on Facial Expressions. Sensors, 25(5). https://doi.org/10.3390/s25051478.
- Rachmi, R., Asri, A., Sa’diyah, S., Nuswantoro, P., & Mokodenseho, S. (2024). The Influence of Emotional Intelligence and Effective Communi-cation on Interpersonal Relationship Quality and Life Satisfaction in Indonesia. The Eastasouth Journal of Social Science and Humanities, 1(02), 68–83. https://doi.org/10.58812/esssh.v1i02.213.
- Rashid, A. Bin, & Kausik, M. D. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. https://doi.org/10.1016/j.hybadv.2024.100277.
- Shovo, S. U. A., Abir, M. G. R., Kabir, M. M., & Mridha, M. F. (2024). Advancing low-light object detection with you only look once models: An empirical study and performance evaluation. Cognitive Computation and Systems, 6(4), 119–134. https://doi.org/10.1049/ccs2.12114.
- Talukder, A., & Ghosh, S. (2024). Facial Image expression recognition and prediction system. Scientific Reports, 14(1), 1–28. https://doi.org/10.1038/s41598-024-79146-z.
- Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Com-putation, 11(3). https://doi.org/10.3390/computation11030052.
- Telçeken, M., Akgün, D., Kacar, S., Yesi̇n, K., & Yıldız, M. (2025). Can artificial intelligence understand our emotions? Deep learning applications with face recognition. Current Psychology, 44, 7946–7956. https://doi.org/10.1007/s12144-025-07375-0.
- Thanh Thao, L., Pham, T., Nguyen, T., Phuong, H. Y., Thu, H., & Tra, N. (2023). Impacts of Emotional Intelligence on Second Language Acquisi-tion: English- Major Students’ Perspectives. SAGE Open, 13, 2023. https://doi.org/10.1177/21582440231212065.
- Yalçin, N., & Alisawi, M. (2024). Introducing a novel dataset for facial emotion recognition and demonstrating significant enhancements in deep learning performance through pre-processing techniques. Heliyon, 10(20). https://doi.org/10.1016/j.heliyon.2024.e38913.
- Younis, E. M. G., Mohsen, S., Houssein, E. H., & Ibrahim, O. A. S. (2024). Machine learning for human emotion recognition: a comprehensive re-view. In Neural Computing and Applications (Vol. 36, Issue 16). Springer London. https://doi.org/10.1007/s00521-024-09426-2.
-
Downloads
-
How to Cite
Imran, I. . ., Wardi, W. ., Nurtanio, I. ., & Samman, F. A. . (2025). Application of Facial Expression Using YOLOv11 to Measure Interest in Training Materials. International Journal of Basic and Applied Sciences, 14(4), 6-16. https://doi.org/10.14419/vxgf1w29
