Application of Facial Expression Using YOLOv11 to Measure Interest in ‎Training Materials

  • Authors

    • I. Imran Department of Electrical Engineering, Hasanuddin University, Gowa, Indonesia
    • W Wardi Department of Informatics Engineering, Hasanuddin University, Gowa, Indonesia
    • Ingrid Nurtanio Department of Electrical Engineering, Hasanuddin University, Gowa, Indonesia
    • Faizal Arya Samman Department of Electrical Engineering, Hasanuddin University, Gowa, Indonesia
    https://doi.org/10.14419/vxgf1w29

    Received date: June 13, 2025

    Accepted date: July 16, 2025

    Published date: August 1, 2025

  • Facial Expression Recognition; YOLOv11; Interest Detection; Training Materials Evaluation; ‎Deep Learning in Education
  • Abstract

    The purpose of this study is to assess trainees' proficiency with the Convolutional Neural ‎Network (CNN) model in recognizing emotions from facial expressions. A wide range of ‎applications in training, education, and human-machine interaction could benefit greatly from ‎computer vision-based emotion recognition. A CNN model created especially to identify ‎important emotions including happiness, sadness, anger, and fear is trained and tested in this ‎study using a dataset of facial expressions. The test findings demonstrate that the CNN model ‎can accurately and efficiently classify emotions and offer valuable information about trainees' ‎strengths and limitations in identifying different emotions. This study emphasizes how CNN-‎based technology may be used to help assess and enhance emotion recognition skills in the ‎setting of professional training‎.

  • References

    1. Ajlouni, N., Özyavaş, A., Ajlouni, F., Takaoğlu, F., & Takaoğlu, M. (2025). Enhanced hybrid ‎facial emotion detection & classification. Franklin Open, 10, 100200. ‎ https://doi.org/10.1016/j.fraope.2024.100200.
    2. Ali, M. L., & Zhang, Z. (2024). The YOLO Framework: A Comprehensive Review of Evolution, ‎Applications, and Benchmarks in Object Detec-tion. Computers, 13(12). ‎ https://doi.org/10.3390/computers13120336.
    3. Aresa Latumahina, M., Santoso, H., & Wasito, I. (2023). Emotion Recognition System Using ‎Autoencoder + CNN + Attention. 10(4), 150–161.‎
    4. Avital, N., Egel, I., Weinstock, I., & Malka, D. (2024). Enhancing Real-Time Emotion ‎Recognition in Classroom Environments Using Convolution-al Neural Networks: A Step ‎Towards Optical Neural Networks for Advanced Data Processing. Inventions, 9(6). ‎ https://doi.org/10.3390/inventions9060113.
    5. Chen, M., Liang, X., & Xu, Y. (2022). Construction and Analysis of Emotion Recognition and ‎Psychotherapy System of College Students under Convolutional Neural Network and ‎Interactive Technology. Computational Intelligence and Neuroscience, 2022(1), 5993839. ‎ https://doi.org/10.1155/2022/5993839.
    6. Chutia, T., & Baruah, N. (2024). A review on emotion detection by using deep learning ‎techniques. In Artificial Intelligence Review (Vol. 57, Issue 8). Springer Netherlands. ‎ https://doi.org/10.1007/s10462-024-10831-1.
    7. Dada, E., Oyewola, D., Joseph, S., Emebo, O., & Oluwagbemi, O. (2023). Facial Emotion ‎Recognition and Classification Using the Convolutional Neural Network-10 (CNN-10). ‎Applied Computational Intelligence and Soft Computing, 2023, 19. ‎ https://doi.org/10.1155/2023/2457898.
    8. Elsheikh, R. A., Mohamed, M. A., Abou-Taleb, A. M., & Ata, M. M. (2024). Improved facial ‎emotion recognition model based on a novel deep convolutional structure. Scientific Reports, ‎‎14(1), 1–31. https://doi.org/10.1038/s41598-024-79167-8.
    9. Gheorghe, C., Duguleana, M., Boboc, R. G., & Postelnicu, C. C. (2024). Analyzing Real-Time ‎Object Detection with YOLO Algorithm in Auto-motive Applications: A Review. CMES - ‎Computer Modeling in Engineering and Sciences, 141(3), 1939–1981. ‎ https://doi.org/10.32604/cmes.2024.054735.
    10. Hakim, G., Simangunsong, G., Ningrat, R., Rabika, J., Rusafni, M., Giri, E., & Mindara, G. ‎‎(2024). Real-Time Facial Emotion Detection Applica-tion with Image Processing Based on ‎Convolutional Neural Network (CNN). International Journal of Electrical Engineering, ‎Mathematics and Computer Science, 1, 27–36. https://doi.org/10.62951/ijeemcs.v1i4.123.
    11. J. Sheril Angel A. Diana Andrushia, T. M. N. O. A. L. S. N. A. (2024). Faster Region ‎Convolutional Neural Network (FRCNN) Based Facial Emo-tion Recognition. Computers, ‎Materials & Continua, 79(2), 2427–2448. https://doi.org/10.32604/cmc.2024.047326.
    12. Jeon, Y.-D., Kang, M.-J., Kuh, S.-U., Cha, H.-Y., Kim, M.-S., You, J.-Y., Kim, H.-J., Shin, S.-‎H., Chung, Y.-G., & Yoon, D.-K. (2024). Deep Learning Model Based on You Only Look ‎Once Algorithm for Detection and Visualization of Fracture Areas in Three-Dimensional ‎Skeletal Imag-es. Diagnostics, 14(1). https://doi.org/10.3390/diagnostics14010011.
    13. Kang, S., Hu, Z., Liu, L., Zhang, K., & Cao, Z. (2025). Object Detection YOLO Algorithms and ‎Their Industrial Applications: Overview and Comparative Analysis. Electronics, 14(6). ‎ https://doi.org/10.3390/electronics14061104.
    14. Kaur, M., & Kumar, M. (2024). Facial emotion recognition: A comprehensive review. Expert ‎Systems, 41(10), e13670. https://doi.org/10.1111/exsy.13670.
    15. Khare, S. K., Blanes-Vidal, V., Nadimi, E. S., & Acharya, U. R. (2024). Emotion recognition ‎and artificial intelligence: A systematic review (2014–2023) and research recommendations. ‎Information Fusion, 102, 102019. ‎ https://doi.org/10.1016/j.inffus.2023.102019.
    16. Kopalidis, T., Solachidis, V., Vretos, N., & Daras, P. (2024). Advances in Facial Expression ‎Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information, 15(3). ‎ https://doi.org/10.3390/info15030135.
    17. Krishna, B. H., Sharon Rose Victor, J., Rao, G. S., Babu, C. R. K., Raju, K. S., Basha, T. S. G., ‎& Reddy, V. B. S. (2024). Emotion-net: Automatic emotion recognition system using ‎optimal feature selection-based hidden markov CNN model. Ain Shams Engineering ‎Journal, 15(12), 103038. https://doi.org/10.1016/j.asej.2024.103038.‎
    18. Kurniadi, W., & M. Ridho Mahaputra. (2021). Determination of Communication in the ‎Organization: Non Verbal, Oral and Written (Literature Re-view). Journal of Law, Politic ‎and Humanities, 1(4), 164–172. https://doi.org/10.38035/jlph.v1i4.80.
    19. Li, C., Shi, Y., & Yi, X. (2021). Video emotion recognition based on Convolutional Neural ‎Networks. Journal of Physics: Conference Series, 1738, 12129. ‎ https://doi.org/10.1088/1742-6596/1738/1/012129.‎
    20. Machová, K., Szabóova, M., Paralič, J., & Mičko, J. (2023). Detection of emotion by text ‎analysis using machine learning. Frontiers in Psychology, 14(September). ‎ https://doi.org/10.3389/fpsyg.2023.1190326.
    21. Manalu, H. V., & Rifai, A. P. (2024). Detection of human emotions through facial expressions ‎using hybrid convolutional neural network-recurrent neural network algorithm. Intelligent ‎Systems with Applications, 21, 200339. https://doi.org/10.1016/j.iswa.2024.200339.
    22. Narigina, M., Romanovs, A., & Merkuryev, Y. (2024). Convolutional Neural Network-Based ‎Digital Diagnostic Tool for the Identification of Psy-chosomatic Illnesses. Algorithms, 17(8). ‎ https://doi.org/10.3390/a17080329.
    23. Nita, S., Bitam, S., Heidet, M., & Mellouk, A. (2022). A new data augmentation convolutional ‎neural network for human emotion recognition based on ECG signals. Biomedical Signal ‎Processing and Control, 75, 103580. ‎ https://doi.org/10.1016/j.bspc.2022.103580.
    24. Pavel, M. S., Moldovanu, S., & Aiordachioaie, D. (2025). On Classification of the Human ‎Emotions from Facial Thermal Images: A Case Study Based on Machine Learning. Machine ‎Learning and Knowledge Extraction, 7(2). https://doi.org/10.3390/make7020027.
    25. Qian, C., Lobo Marques, J. A., de Alexandria, A. R., & Fong, S. J. (2025). Application of ‎Multiple Deep Learning Architectures for Emotion Clas-sification Based on Facial ‎Expressions. Sensors, 25(5). https://doi.org/10.3390/s25051478.
    26. Rachmi, R., Asri, A., Sa’diyah, S., Nuswantoro, P., & Mokodenseho, S. (2024). The Influence of ‎Emotional Intelligence and Effective Communi-cation on Interpersonal Relationship Quality ‎and Life Satisfaction in Indonesia. The Eastasouth Journal of Social Science and ‎Humanities, 1(02), 68–83. https://doi.org/10.58812/esssh.v1i02.213.‎
    27. Rashid, A. Bin, & Kausik, M. D. A. K. (2024). AI revolutionizing industries worldwide: A ‎comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. ‎ https://doi.org/10.1016/j.hybadv.2024.100277.
    28. Shovo, S. U. A., Abir, M. G. R., Kabir, M. M., & Mridha, M. F. (2024). Advancing low-light ‎object detection with you only look once models: An empirical study and performance ‎evaluation. Cognitive Computation and Systems, 6(4), 119–134. ‎ https://doi.org/10.1049/ccs2.12114.‎
    29. Talukder, A., & Ghosh, S. (2024). Facial Image expression recognition and prediction system. ‎Scientific Reports, 14(1), 1–28. https://doi.org/10.1038/s41598-024-79146-z.
    30. Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, ‎Architectures, Applications, Future Directions. Com-putation, 11(3). ‎ https://doi.org/10.3390/computation11030052.
    31. Telçeken, M., Akgün, D., Kacar, S., Yesi̇n, K., & Yıldız, M. (2025). Can artificial intelligence ‎understand our emotions? Deep learning applications with face recognition. Current ‎Psychology, 44, 7946–7956. https://doi.org/10.1007/s12144-025-07375-0.
    32. Thanh Thao, L., Pham, T., Nguyen, T., Phuong, H. Y., Thu, H., & Tra, N. (2023). Impacts of ‎Emotional Intelligence on Second Language Acquisi-tion: English- Major Students’ ‎Perspectives. SAGE Open, 13, 2023. https://doi.org/10.1177/21582440231212065.‎
    33. Yalçin, N., & Alisawi, M. (2024). Introducing a novel dataset for facial emotion recognition and ‎demonstrating significant enhancements in deep learning performance through pre-‎processing techniques. Heliyon, 10(20). https://doi.org/10.1016/j.heliyon.2024.e38913.
    34. Younis, E. M. G., Mohsen, S., Houssein, E. H., & Ibrahim, O. A. S. (2024). Machine learning for ‎human emotion recognition: a comprehensive re-view. In Neural Computing and Applications ‎‎(Vol. 36, Issue 16). Springer London. https://doi.org/10.1007/s00521-024-09426-2.
  • Downloads

  • How to Cite

    Imran, I. . ., Wardi, W. ., Nurtanio, I. ., & Samman, F. A. . (2025). Application of Facial Expression Using YOLOv11 to Measure Interest in ‎Training Materials. International Journal of Basic and Applied Sciences, 14(4), 6-16. https://doi.org/10.14419/vxgf1w29