Experimental Study of Dross Height Formation for CO2 and Fiber Laser Machining of SS 310 Material

  • Authors

    • Sachin Malave Research Scholar, Department of Mechanical Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu-333010, Rajasthan, India
    • Aniket Jadhav Assistant Professor, Department of Mechanical Engineering, Smt. Kashibai Navale College of Engineering, Pune-411041, Maharashtra, India
    • Nitish Kumar Gautam Assistant Professor, Department of Mechanical Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu-333010, Rajasthan, India
    https://doi.org/10.14419/wt674v75

    Received date: June 15, 2025

    Accepted date: August 1, 2025

    Published date: August 12, 2025

  • laser machining, optimization, dross height formation, DOE, laser power
  • Abstract

    Laser cutting is a popular non-traditional thermal machining technique. With this machining technique, almost all the materials having com-plex geometries are machined with higher accuracy. In this paper experimental study of dross height formation on 25 mm thick laser machining of SS 310 material utilizing CO2 laser and fiber lasers is carried out. Dross height is measured to evaluate the influence of varying process parameters, consisting of gas pressure, cutting speed, and laser power. For the experimental task, a Bystronic laser machine is utilized. There are 17 trial runs in all, with three components and two levels selected. ANOVA is utilized in mathematical calculations. The optimized values during laser machining are identified for the process parameters. Optimum values for these factors are defined with the goal of attaining the minimum dross height. The primary interpretation made from this experimental study is that dross height increases as there is increase in the laser power.

  • References

    1. Abedinzadeh, R., Norouzi, E., and Toghraie, D. (2021) Experimental investigation of machinability in laser-assisted machining of aluminum-based nanocomposites. Journal of Materials Research and Technology, 15, 3481–3491.
    2. Alsaadawy, M., Dewidar, M., Said, A., Maher, I., and Shehabeldeen, T. A. (2024) Investigation of the effect of laser cutting parameters on surface and kerf quality of thick TI–6AL–4V alloy sheets. Arabian Journal for Science and Engineering.
    3. Alsoruji, G., Muthuramalingam, T., Moustafa, E. B., and Elsheikh, A. (2022) Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy. Journal of Materials Research and Technology, 18, 720–730.
    4. Jadhav, A., and Kumar, S. (2019) An experimental study of influence of process parameters on dross properties in laser machining of AISI 304 ma-terial. Journal of Manufacturing Engineering, 111–116.
    5. Jadhav, A., and Kumar, S. (2019) Laser cutting of AISI 304 material: an experimental investigation on surface roughness. Advances in Materials and Processing Technologies, 429–437.
    6. Bach, J., Zeuner, A. T., Wanski, T., Fischer, S. C. L., Herwig, P., and Zimmermann, M. (2023) Influence of the dross formation of the laser-cut edge on the fatigue strength of AISI 304. Metals, 13 (3), 624.
    7. Eaysin, A., Kabir, S., Gunister, E., Jahan, N., Hamza, A., Zinnah, M. A., and Rashid, A. B. (2024) Process parameter optimization of laser beam machining for AISI-P20 mold steel using ANFIS method. Results in Surfaces and Interfaces, 100357.
    8. Franceschetti, L., Pacher, M., Tanelli, M., Strada, S. C., Previtali, B., and Savaresi, S. M. (2022) Dross attachment estimation in the laser-cutting process via convolutional neural networks (CNN). In 30th Mediterranean Conference on Control and Automation (MED), 850–855.
    9. Garcia-Lopez, E., Ibarra-Medina, J. R., Siller, H. R., Lammel-Lindemann, J. A., and Rodriguez, C. A. (2018) Surface finish and back-wall dross behavior during the fiber laser cutting of AZ31 magnesium alloy. Micromachines, 9 (10), 485.
    10. Garcia-Lopez, E., Medrano-Tellez, A., Ibarra-Medina, J., Siller, H., and Rodriguez, C. (2017) Experimental study of back wall dross and surface roughness in fiber laser microcutting of 316L miniature tubes. Micromachines, 9 (1), 4.
    11. Hiwale, S., and Rajiv, B. (2020) Experimental investigations of laser machining process parameters using response surface methodology. Materials Today: Proceedings, 44, 3939–3945.
    12. Hu, C., Mi, G., and Wang, C. (2020) Study on surface morphology and recast layer microstructure of medium thickness stainless steel sheets using high power laser cutting. Journal of Laser Applications, 32 (2).
    13. Jadhav, A., and Kumar, S. (2020) Laser machining of AISI 304: an experimental study of influence of process parameters on dross height for-mation. In Lecture Notes in Mechanical Engineering, 537–545.
    14. Ji, M., Thangaraj, M., Devaraj, S., Machnik, R., Karkalos, N. E., and Karmiris-Obratański, P. (2024) Prediction and optimization kerf width in laser beam machining of titanium alloy using genetic algorithm tuned adaptive neuro-fuzzy inference system. The International Journal of Advanced Manufacturing Technology, 132 (11–12), 5873–589.
    15. Kai, N., Okamoto, Y., Okada, A., Ishiguro, H., Ito, R., Sugiyama, A., Okawa, H., and Fujita, R. (2021) Investigation on reduction of dross height by analyzing beam intensity distribution in fiber laser cutting. Journal of Laser Applications, 33 (4).
    16. Kardan, M., Levichev, N., Castagne, S., and Duflou, J. R. (2023) Dynamic beam shaping requirements for fiber laser cutting of thick plates. Journal of Manufacturing Processes, 103, 287–297.
    17. Leone, C., Genna, S., Caggiano, A., Tagliaferri, V., and Molitierno, R. (2015) An investigation on ND:YAG laser cutting of AL 6061 T6 alloy sheet. Procedia CIRP, 28, 64–69.
    18. Mahrle, A., Wanski, T., Zeuner, A. T., Herwig, P., and Zimmermann, M. (2023) Investigations on dross formation susceptibility in laser fusion cut-ting of different stainless-steel compositions with emphasis on minor element effects. Journal of Laser Applications, 35 (3).
    19. Muthuramalingam, T., Moiduddin, K., Akash, R., Krishnan, S., Mian, S. H., Ameen, W., and Alkhalefah, H. (2020) Influence of process parame-ters on dimensional accuracy of machined Titanium (Ti-6Al-4V) alloy in laser beam machining process. Optics and Laser Technology, 132, 106494.
    20. Nabavi, S. F., Farshidianfar, M. H., Farshidianfar, A., and Marandi, S. (2022) Dross formation modeling in the laser beam cutting process using en-ergy-based and gas-based parameters. The International Journal of Advanced Manufacturing Technology, 120 (11–12), 8169–8184.
    21. Okamoto, Y., Morimoto, K., Kai, N., Okada, A., Ishiguro, H., Ito, R., and Okawa, H. (2023) Fiber laser cutting of steel plate by twin spot beam setting in scanning direction. Journal of Laser Applications, 35 (4).
    22. Patel, A. R., and Bhavsar, S. N. (2020) Laser machining of die steel (En-31): an experimental investigation to study the effect of process parameters. Advances in Materials and Processing Technologies, 8 (1), 688–702.
    23. Patel, A., and Bhavsar, S. N. (2020) Experimental investigation to optimize laser cutting process parameters for difficult to cut die alloy steel using response surface methodology. Materials Today: Proceedings, 43, 28–35.
    24. Petkovic, D., Nikolic, V., Milovancevic, M., and Lazov, L. (2016) Estimation of the most influential factors on the laser cutting process heat affect-ed zone (HAZ) by adaptive neuro-fuzzy technique. Infrared Physics & Technology, 77, 12–15.
    25. Rao, K. V., Raju, L. S., Suresh, G., Ranganayakulu, J., and Krishna, J. (2023) Modelling of kerf width and surface roughness using vibration sig-nals in laser beam machining of stainless-steel using design of experiments. Optics & Laser Technology, 169, 110146.
    26. Rohman, M. N., Ho, J., Tung, P., Lin, C., and Lin, C. (2022) Prediction and optimization of dross formation in laser cutting of electrical steel sheet in different environments. Journal of Materials Research and Technology, 18, 1977–1990.
    27. Sargar, T., Jadhav, A., and Gautam, N. K. (2023) Comparative study of process parameters on dross properties by laser machining of AISI 316L material. Materials Today: Proceedings.
    28. Singh, A. K., Bal, K. S., Pal, A. R., Dey, D., and Choudhury, A. R. (2021) A novel method to reduce dross in laser beam cutting of Ti-6Al-4 V alloy sheet. Journal of Manufacturing Processes, 64, 95–112.
    29. Teixidor, D., Ciurana, J., and Rodriguez, C. A. (2014) Dross formation and process parameters analysis of fibre laser cutting of stainless-steel thin sheets. The International Journal of Advanced Manufacturing Technology, 71 (9–12), 1611–1621.
    30. Sargar, T., Jadhav, A., and Gautam, N. K. (2024) Experimental study of heat affected zone for CO₂ and fiber laser machining of SS 316L material. Materials Today: Proceedings.
    31. Yagi, A., Kadonaga, S., Okamoto, Y., Ishiguro, H., Ito, R., Sugiyama, A., Okawa, H., Fujita, R., and Okada, A. (2020) Fundamental study on re-duction of dross in fiber laser cutting of steel by shifting nozzle axis. Journal of Laser Applications, 33 (1).
  • Downloads

  • How to Cite

    Malave, S., Jadhav , A. ., & Gautam, N. K. . (2025). Experimental Study of Dross Height Formation for CO2 and Fiber Laser Machining of SS 310 Material. International Journal of Basic and Applied Sciences, 14(SI-2), 183-188. https://doi.org/10.14419/wt674v75