Mathematical Modeling of Epidemic Spread: COVID-19 Case Study and Future Pandemic Preparedness
-
https://doi.org/10.14419/7tx0yh53
Received date: June 8, 2025
Accepted date: July 7, 2025
Published date: July 15, 2025
-
COVID-19; Disease Dynamics; Epidemic Modeling; Mathematical Biology; SEIR Model. -
Abstract
This paper presents a comprehensive mathematical framework for modeling epidemic spread, with a specific application to the COVID-19 pandemic. We develop an enhanced SEIR (Susceptible-Exposed-Infected-Recovered) model incorporating vaccination dynamics, behavioral changes, and spatial heterogeneity. Our model introduces time-varying transmission rates and accounts for asymptomatic carriers, providing more accurate predictions than traditional compartmental models. Through numerical simulations calibrated with real-world COVID-19 data from multiple countries, we demonstrate the model's effectiveness in capturing complex epidemic dynamics. The framework achieves a prediction accuracy of 92.3% for peak timing and 87.6% for case counts over a 60-day horizon. We further extend the model to incorporate machine learning techniques for parameter estimation, resulting in improved forecasting capabilities. Our findings reveal critical insights for pandemic preparedness, including the optimal timing of interventions and the impact of population heterogeneity on disease spread. This work provides policymakers with a robust tool for epidemic management and highlights key areas for future pandemic preparedness strategies.
-
References
- Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). "How will country-based mitigation measures influence the course of the COVID-19 epidemic?" The Lancet, 395(10228), 931-934. https://doi.org/10.1016/S0140-6736(20)30567-5.
- Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., et al. (2020). "Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand." Imperial College COVID-19 Response Team, Report 9.
- Kermack, W. O., & McKendrick, A. G. (1927). "A contribution to the mathematical theory of epidemics." Proceedings of the Royal Society A, 115(772), 700-721. https://doi.org/10.1098/rspa.1927.0118.
- Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical Models in Epidemiology. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4939-9828-9.
- Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (2000). "On the definition and the computation of the basic reproduction ratio R₀." Journal of Mathematical Biology, 41(4), 365-382.
- Hethcote, H. W. (2000). "The mathematics of infectious diseases." SIAM Review, 42(4), 599-653. https://doi.org/10.1137/S0036144500371907.
- Li, Q., Guan, X., Wu, P., et al. (2020). "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia." New England Journal of Medicine, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316.
- Wu, J. T., Leung, K., & Leung, G. M. (2020). "Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV out-break." The Lancet, 395(10225), 689-697. https://doi.org/10.1016/S0140-6736(20)30260-9.
- Davies, N. G., Klepac, P., Liu, Y., et al. (2020). "Age-dependent effects in the transmission and control of COVID-19 epidemics." Nature Medi-cine, 26(8), 1205-1211. https://doi.org/10.1038/s41591-020-0962-9.
- Moghadas, S. M., Shoukat, A., Fitzpatrick, M. C., et al. (2020). "Projecting hospital utilization during the COVID-19 outbreaks in the United States." PNAS, 117(16), 9122-9126. https://doi.org/10.1073/pnas.2004064117.
- Prem, K., Liu, Y., Russell, T. W., et al. (2020). "The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic." The Lancet Public Health, 5(5), e261-e270. https://doi.org/10.1016/S2468-2667(20)30073-6.
- Cori, A., Ferguson, N. M., Fraser, C., & Cauchemez, S. (2013). "A new framework and software to estimate time-varying reproduction numbers during epidemics." American Journal of Epidemiology, 178(9), 1505-1512. https://doi.org/10.1093/aje/kwt133.
- Flaxman, S., Mishra, S., Gandy, A., et al. (2020). "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe." Nature, 584(7820), 257-261.
- Funk, S., Salathe, M., & Jansen, V. A. (2010). "Modelling the influence of human behaviour on the spread of infectious diseases." Journal of the Royal Society Interface, 7(50), 1247-1256. https://doi.org/10.1098/rsif.2010.0142.
- Sattenspiel, L., & Dietz, K. (1995). "A structured epidemic model incorporating geographic mobility among regions." Mathematical Biosciences, 128(1-2), 71-91. https://doi.org/10.1016/0025-5564(94)00068-B.
- Kerr, C. C., Stuart, R. M., Mistry, D., et al. (2021). "Covasim: an agent-based model of COVID-19 dynamics and interventions." PLOS Computa-tional Biology, 17(7), e1009149. https://doi.org/10.1371/journal.pcbi.1009149.
- Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). "Epidemic processes in complex networks." Reviews of Modern Physics, 87(3), 925. https://doi.org/10.1103/RevModPhys.87.925.
- Dong, E., Du, H., & Gardner, L. (2020). "An interactive web-based dashboard to track COVID-19 in real time." The Lancet Infectious Diseases, 20(5), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1.
- Hasell, J., Mathieu, E., Beltekian, D., et al. (2020). "A cross-country database of COVID-19 testing." Scientific Data, 7(1), 345. https://doi.org/10.1038/s41597-020-00688-8.
-
Downloads
-
How to Cite
Mane, D. T. . ., Wagh , K. S. ., Patil, K. T. . ., Dhope , T. S. ., Mali , N. D. ., Kulkarni, N. S. . ., & Gupta , D. . (2025). Mathematical Modeling of Epidemic Spread: COVID-19 Case Study and Future Pandemic Preparedness. International Journal of Basic and Applied Sciences, 14(3), 88-93. https://doi.org/10.14419/7tx0yh53
