Fractal Revolution: Unleashing Multi-Band Power in Compact Patch Antennas for 5G and Beyond
-
https://doi.org/10.14419/3rgs0w03
Received date: June 4, 2025
Accepted date: July 4, 2025
Published date: July 21, 2025
-
Dielectric Substrates; Microstrip Antenna; Multi-Band; Patch Geometry; Wireless Communication -
Abstract
This research presents the design and performance analysis of a dual-band microstrip patch antenna for wireless applications. The antenna, fabricated on an FR-4 substrate, incorporates space-filling and self-similar properties to enhance performance. It operates in multiple frequency bands (2.2571 GHz, 3.8571 GHz, 5.0000 GHz, and 7.1714 GHz) with return loss values below -9 dB, indicating good impedance matching. Simulation results demonstrate high radiation efficiency, stable group delay, and consistent radiation patterns across the operating bands. The antenna's peak gain exceeds 5 dB over a broad frequency range, occasionally reaching 8 dB. These characteristics make it suitable for various wireless applications, including WLAN, WiMAX, and sub-6 GHz 5G systems. The study concludes that the designed antenna exhibits strong multiband performance with stable and efficient operation over the 2.2-7.1 GHz frequency band, making it viable for integration in high-performance RF systems.
-
References
- G. K. Soni, D. Yadav, A. Kumar, P. Jain, and M. V. Yadav, “Design and optimization of flexible DGS-based microstrip antenna for wearable de-vices in the Sub-6 GHz range using the nelder-mead simplex algorithm,” Results Eng., vol. 24, no. August, p. 103470, 2024, https://doi.org/10.1016/j.rineng.2024.103470.
- D. Froumsia, E. D. Jean-François, A. Houwe, Kolyang, and M. Inc, “Miniaturization of dual bands fractal-based microstrip patch fractal antenna for X and Ku bands applications,” Eur. Phys. J. Plus, vol. 137, no. 6, 2022, https://doi.org/10.1140/epjp/s13360-022-02969-0.
- M. Secmen, “Multiband and Wideband Antennas for Mobile Communication Systems,” Recent Dev. Mob. Commun. - A Multidis-cip. Approach, 2011, https://doi.org/10.5772/25921.
- P. Bini Palas and K. Rahimunnisa, “Exploring the structural features of Triangular fractal antenna for detection of brain tumor,” Ain Shams Eng. J., vol. 16, no. 5, p. 103369, 2025, https://doi.org/10.1016/j.asej.2025.103369.
- A. Reha, O. Benkhadda, A. O. Said, A. El Amri, and A. J. A. Al-Gburi, “Design of Sub-6GHz and Sub-7GHz Dragon Fractal An-tenna for 5G Applications with Enhanced Bandwidth,” Int. J. Intell. Eng. Syst., vol. 18, no. 2, pp. 14–22, 2025, https://doi.org/10.22266/ijies2025.0331.02.
- M. Alagarsamy, S. Govindasamy, K. Suriyan, B. Rajangam, S. Mariappan, and J. C. R. Krishnan, “Performance analysis of mi-crostrip patch anten-na for wireless communication systems,” Int. J. Reconfigurable Embed. Syst., vol. 13, no. 2, pp. 227–233, 2024, https://doi.org/10.11591/ijres.v13.i2.pp227-233.
- R. DR Mishra, “An Overview of Microstrip,” vol. 21, no. 2, pp. 1–17, 2016.
- S. K. Palanisamy, A. R. Vaddinuri, A. A. Khan, and M. Faheem, “Modeling of Inscribed Dual Band Circular Fractal Antenna for Wi-Fi Applica-tion Using Descartes Circle Theorem,” Eng. Reports, 2024, https://doi.org/10.1002/eng2.13019.
- U. Patel et al., “Split ring resonator geometry inspired crossed flower shaped fractal antenna for satellite and 5G communication applications,” Re-sults Eng., vol. 22, no. April, p. 102110, 2024, https://doi.org/10.1016/j.rineng.2024.102110.
- S. Tariq, S. I. Naqvi, N. Hussain, and Y. Amin, “A Metasurface-Based MIMO Antenna for 5G Millimeter-Wave Applications,” IEEE Access, vol. 9, pp. 51805–51817, 2021, https://doi.org/10.1109/ACCESS.2021.3069185.
- D. Prabhakar, P. Karunakar, S. V. R. Rao, and K. Srinivas, “Prediction of microstrip antenna dimension using optimized auto-metric Graph Neural Network,” Intell. Syst. with Appl., vol. 21, no. January, p. 200326, 2024, https://doi.org/10.1016/j.iswa.2024.200326.
- S. Hossain, M. S. Rana, and M. M. Rahman, “Design and Analysis of Inverted E-Shaped Slotted Patch Microstrip Antenna for Multiband Applica-tions,” pp. 385–399, 2024, https://doi.org/10.1007/978-981-97-2451-2_26.
- A. Kapoor, R. Mishra, A. Kapoor, and P. Kumar, “Compact wideband-printed antenna for sub-6 GHz fifth-generation applica-tions,” Int. J. Smart Sens. Intell. Syst., vol. 13, no. 1, pp. 1–10, 2020, https://doi.org/10.21307/ijssis-2020-033.
- N. L. Nhlengethwa and P. Kumar, “Fractal microstrip patch antennas for dual-band and triple-band wireless applications,” Int. J. Smart Sens. Intell. Syst., vol. 14, no. 1, pp. 1–9, 2021, https://doi.org/10.21307/ijssis-2021-007.
- M. Ismail, H. Elsadek, E. A. Abdallah, and A. A. Ammar, “ݸ¿°¬»® íð Ͱ¿½»óo·´´·21 o®¿½¬¿´ 3·½®±¬®·° ¿2¬»22¿,” doi: 10.1007/978-0-387-76483-2.
- Y. Sun et al., “High-Gain Dual-Polarization Microstrip Antenna Based on Transmission Focusing Metasurface,” Materials (Basel)., vol. 17, no. 15, pp. 1–15, 2024, https://doi.org/10.3390/ma17153730.
- D. Jang, N. K. Kong, and H. Choo, “Design of an On-Glass 5G Monopole Antenna for a Vehicle Window Glass,” IEEE Access, vol. 9, pp. 152749–152755, 2021, https://doi.org/10.1109/ACCESS.2021.3125977.
- H. Ri et al.,: “L0 $ ;: LUHOHVV & RPPXQLFDWLRQ,” pp. 5–8.
-
Downloads
-
How to Cite
Kadam , S. ., Mhetre, H., Kadam , P. ., Patil , V. ., Gurav , S. ., Mane , S. ., & Sutar, S. . (2025). Fractal Revolution: Unleashing Multi-Band Power in Compact Patch Antennas for 5G and Beyond. International Journal of Basic and Applied Sciences, 14(3), 206-215. https://doi.org/10.14419/3rgs0w03
