A Meta Multi-Objective Reinforcement Learning Framework For Non-Orthogonal, Age-Optimized Information Dissemination in Vehicular ‎Networks

  • Authors

    • Dr. Vullam Nagagopiraju Professor, Department of CSE, Chalapathi Institute of Engineering and Technology, ‎Guntur
    • U. S. B. K. Mahalaxmi Department of Electronics and Communication Engineering, Aditya University, Surampalem, ‎Andhra Pradesh, India
    • Bathula Prasanna Kumar Associate Professor, Department of CSE- Data Science, KKR & KSR Institute ‎of Technology and Sciences, Guntur, Andhra Pradesh, India
    • Dr. Suresh Betam Assistant Professor, Department of CSE, KL Deemed to be University, Vaddeswaram, ‎Andhra Pradesh, India
    • Manasa Bandlamudi Assistant Professor, Information Technology, RVR & JC College of Engineering, Guntur, Andhra ‎Pradesh, India
    • Dr. Aktar Geeta Bhimrao Assistant Professor, G H Raisoni College of Engineering and Management, Pune
    • Rohini Rajesh Swami Devnikar Assistant Professor, G H Raisoni College of Engineering and Management, Pune
    • Dr. Sarala Patchala Associate Professor, Department of Electronics and Communication Engineering, ‎KKR & KSR Institute of Technology and Sciences, Guntur, Andhra Pradesh, India
    • Srija Gundapaneni Assistant Professor, Computer Science and Engineering-IoT, RVR & JC College of Engineering, ‎ Andhra Pradesh, India
    https://doi.org/10.14419/hkfqf643

    Received date: May 23, 2025

    Accepted date: August 6, 2025

    Published date: September 8, 2025

  • Reinforcement; Multi-Objective; Vehicular Network; Multi; Meta Objective
  • Abstract

    This paper studies how to send fresh and efficient information in vehicular networks. A roadside unit ‎‎(RSU) updates vehicles about different events. The goal is to reduce the delay in receiving information ‎while also saving power during transmission. The system uses an innovative way of transmitting data. ‎It sends multiple messages at the same time using superposition. Vehicles cancel unwanted signals with ‎a technique called successive interference cancellation (SIC). This method helps to improve the efficiency of communication. The problem is complex because two objectives must be optimized. One is to ‎minimize the delay in information updates, and the other is to minimize the power needed to send ‎updates. This is a multi-objective problem that is difficult to solve using traditional methods. To ‎address this challenge, the paper uses reinforcement learning (RL). A deep Q-network (DQN) decides the ‎best way to decode messages, while a deep deterministic policy gradient (DDPG) model determines ‎the optimal power allocation. Each learning model trains separately for different cases, which increases ‎computational time and effort. Instead of training models separately, the paper proposes a meta-‎learning approach. This helps estimate good solutions quickly without the need for retraining every ‎time. The meta-model adapts with small updates, saving significant time and computational resources. ‎Simulation results demonstrate that the proposed method outperforms older approaches. It reduces ‎training time while still achieving high efficiency. Moreover, it provides a better balance between ‎formation freshness and power consumption. These improvements make it highly suitable for real-time ‎data sharing in vehicular networks. This research has practical implications for enhancing road safety ‎and smart transportation systems. By optimizing data dissemination it contributes to the development ‎of more reliable and efficient vehicular communication networks‎.

  • References

    1. C. Zhang, X. Lin, R. Lu, and P.-H. Ho, “Raise: An efficient rsu-aided message ‎authentication scheme in vehicular communication networks,” in 2008 IEEE ‎international conference on communications, pp. 1451–1457, IEEE, 2008.‎ https://doi.org/10.1109/ICC.2008.281.
    2. K. Fall, “A delay-tolerant network architecture for challenged internets,” in ‎Proceedings of the 2003 conference on Applications, technologies, ar-chitectures, ‎and protocols for computer communications, pp. 27–34, 2003.‎ https://doi.org/10.1145/863955.863960.
    3. D. Chefrour, “One-way delay measurement from traditional networks to sdn: A ‎survey,” ACM Computing Surveys (CSUR), vol. 54, no. 7, pp. 1–35, 2021.‎ https://doi.org/10.1145/3466167.
    4. Y. Yuan, B. Yang, W. Su, H. Li, C. Wang, Q. Liu, and T. Taleb, “Aoi and ‎energy-driven dynamic cache updates for wireless edge networks,” IEEE ‎Internet of Things Journal, 2024.‎ https://doi.org/10.1109/JIOT.2024.3470847.
    5. J. Jiang, W. Tu, H. Kong, W. Zeng, R. Zhang, and M. Konecny, “Large-scale ‎urban multiple-modal transport evacuation model for mass gathering events ‎considering pedestrian and public transit system,” IEEE Transactions on ‎Intelligent Transportation Systems, vol. 23, no. 12, pp. 23059–23069, 2022.‎ https://doi.org/10.1109/TITS.2022.3198178.
    6. W. U. Khan, F. Jameel, N. Kumar, R. J¨antti, and M. Guizani, “Backscatter-‎enabled efficient v2x communication with non-orthogonal multiple ac-cess,” ‎IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1724–1735, ‎‎2021.‎ https://doi.org/10.1109/TVT.2021.3056220.
    7. B. R. Sharan, S. Deshmukh, S. R. B. Pillai, and B. Beferull-Lozano, “Energy ‎efficient aoi minimization in opportunistic noma/oma broadcast wire-less ‎networks,” IEEE Transactions on Green Communications and Networking, vol. ‎‎6, no. 2, pp. 1009–1022, 2021.‎ https://doi.org/10.1109/TGCN.2021.3135351.
    8. S. Wang, S. Zhang, J. Zhang, R. Hu, X. Li, T. Zhang, J. Li, F. Wu, G. Wang, and ‎E. Hovy, “Reinforcement learning enhanced llms: A survey,” arXiv preprint ‎arXiv:2412.10400, 2024.‎
    9. Y. Long, S. Zhao, S. Gong, B. Gu, D. Niyato, and X. Shen, “Aoi-aware sensing ‎scheduling and trajectory optimization for multi-uav-assisted wire-less backscatter ‎networks,” IEEE Transactions on Vehicular Technology, 2024.‎ https://doi.org/10.1109/TVT.2024.3402740.
    10. A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak, “A survey and ‎comparative study of hard and soft real-time dynamic resource allo-cation ‎strategies for multi-/many-core systems,” ACM Computing Surveys (CSUR), ‎vol. 50, no. 2, pp. 1–40, 2017.‎ https://doi.org/10.1145/3057267.
    11. X. Deng, Y. Liang, D. Luo, J. Wang, X. Yan, and J. Duan, “A multi-objective ‎optimization model for rsu deployment in intelligent expressways based on ‎traffic adaptability,” IET Intelligent Transport Systems, vol. 18, no. 11, pp. ‎‎2204–2223, 2024.‎ https://doi.org/10.1049/itr2.12568.
    12. W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen, “Internet of ‎vehicles in big data era,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, ‎pp. 19–35, 2017.‎ https://doi.org/10.1109/JAS.2017.7510736.
    13. Y. Ni, L. Cai, and Y. Bo, “Vehicular beacon broadcast scheduling based on age ‎of information (aoi),” China Communications, vol. 15, no. 7, pp. 67–76, 2018.‎ https://doi.org/10.1109/CC.2018.8424604.
    14. M. I. Ashraf, C.-F. Liu, M. Bennis, W. Saad, and C. S. Hong, “Dynamic ‎resource allocation for optimized latency and reliability in vehicular net-works,” ‎IEEE Access, vol. 6, pp. 63843–63858, 2018.‎ https://doi.org/10.1109/ACCESS.2018.2876548.
    15. A. A. Habob, H. Tabassum, and O. Waqar, “Non-orthogonal age-optimal ‎information dissemination in vehicular networks: A meta multi-objective ‎reinforcement learning approach,” arXiv preprint arXiv:2402.12260, 2024.‎ https://doi.org/10.1109/TMC.2024.3367166.
    16. S. B. Tadele, B. Kar, F. G. Wakgra, and A. U. Khan, “Optimization of end-to-‎end aoi in edge-enabled vehicular fog systems: A dueling-dqn ap-proach,” IEEE ‎Internet of Things Journal, 2024.‎ https://doi.org/10.1109/JIOT.2024.3472026.
    17. M. Chen, Y. Xiao, Q. Li, and K.-c. Chen, “Minimizing age-of-information for ‎fog computing-supported vehicular networks with deep q-learning,” in ICC ‎‎2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6, ‎IEEE, 2020.‎ https://doi.org/10.1109/ICC40277.2020.9149054.
    18. Z. Li, L. Xiang, and X. Ge, “Age of information modeling and optimization for ‎fast information dissemination in vehicular social networks,” IEEE Transactions ‎on Vehicular Technology, vol. 71, no. 5, pp. 5445–5459, 2022.‎ https://doi.org/10.1109/TVT.2022.3154766.
    19. L. Yang, J. Chen, Q. Ni, J. Shi, and X. Xue, “Noma-enabled cooperative ‎unicast–multicast: Design and outage analysis,” IEEE Transactions on Wireless ‎Communications, vol. 16, no. 12, pp. 7870–7889, 2017.‎ https://doi.org/10.1109/TWC.2017.2754261.
    20. A. J. Kadhim and S. A. H. Seno, “Energy-efficient multicast routing protocol ‎based on sdn and fog computing for vehicular networks,” Ad Hoc Networks, ‎vol. 84, pp. 68–81, 2019.‎ https://doi.org/10.1016/j.adhoc.2018.09.018.
    21. P. Scopelliti, G. Araniti, G.-M. Muntean, A. Molinaro, and A. Iera, “A hybrid ‎unicast-multicast utility-based network selection algorithm,” in 2017 IEEE ‎International Symposium on Broadband Multimedia Systems and Broadcasting ‎‎(BMSB), pp. 1–6, IEEE, 2017.‎ https://doi.org/10.1109/BMSB.2017.7986146.
    22. C.-Y. Lin and W. Liao, “Aoi-aware interference mitigation for task-oriented ‎multicasting in multi-cell noma networks,” IEEE Transactions on Wire-less ‎Communications, 2024.‎ https://doi.org/10.1109/TWC.2024.3381480.
    23. C. Chen, W.-D. Zhong, and D. H. Wu, “Non-hermitian symmetry orthogonal ‎frequency division multiplexing for multiple-input multiple-output visible light ‎communications,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. 36–44, ‎Jan. 2017.‎ https://doi.org/10.1364/JOCN.9.000036.
    24. W. Khalid, A.-A. A. Boulogeorgos, T. Van Chien, J. Lee, H. Lee and H. Yu, ‎‎“Optimal Operation of Active RIS-Aided Wireless Powered Commu-nications in ‎IoT Networks,” IEEE Internet of Things Journal, vol. 12, no. 1, pp. 390–401, 1 ‎Jan. 2025.‎ https://doi.org/10.1109/JIOT.2024.3461814.
    25. W. Khalid and H. Yu, “Security Improvement with QoS Provisioning Using ‎Service Priority and Power Allocation for NOMA-IoT Networks,” IEEE Access, ‎vol. 9, pp. 9937–9948, Jan. 2021.‎ https://doi.org/10.1109/ACCESS.2021.3049258.
    26. W. Khalid, Z. Kaleem, R. Ullah, T. Van Chien, S. Noh and H. Yu, ‎‎“Simultaneous Transmitting and Reflecting-Reconfigurable Intelligent Surface in ‎‎6G: Design Guidelines and Future Perspectives,” IEEE Network, vol. 37, no. 5, ‎pp. 173–181, Sept. 2023.‎ https://doi.org/10.1109/MNET.129.2200389.
    27. Ummiti Sreenivasulu, Shaik Fairooz, R. Anil Kumar, Sarala Patchala, R. Prakash ‎Kumar, Adireddy Rmaesh, “Joint beamforming with RIS assisted MU-MISO ‎systems using HR-mobilenet and ASO algorithm, Digital Signal Processing, Volume ‎‎159, 2025, 104955,ISSN 1051-2004, https://doi.org/10.1016/j.dsp.2024.104955.‎ https://doi.org/10.1016/j.dsp.2024.104955.
    28. Satyam, A. ., Kumar, R. A. ., Patchala , S. ., Pachala, S. ., Geeta Bhimrao Atkar, & Mahalaxm, ‎U. S. B. K. . (2025). Multi-agent learning for UAV networks: a unified approach ‎to trajectory ‎control, frequency allocation and routing. International Journal of Basic and Applied ‎Sciences, 14(2), 189-201. https://doi.org/10.14419/474dfq89.‎
    29. Kumar , B. P. ., Mahalaxmi , U. S. B. K. ., Nagagopiraju, V. . ., Manda , A. K. ., Chandana , K. ., ‎Betam, D. ‎Suresh . ., Gangadhar , A. ., & Patchala, D. S. . . (2025). Deep Reinforcement ‎Learning for Joint UAV Trajecto‎ry and Communication Design in Cache-Enabled ‎Cellular Net-works. International Journal of Basic and Applied Sciences, 14(3), 418-‎‎430. https://doi.org/10.14419/djn77m90.
  • Downloads

  • How to Cite

    Nagagopiraju, D. V. . ., Mahalaxmi , U. S. B. K. ., Kumar , B. P. ., Betam, D. S. . ., Bandlamudi , M. ., Bhimrao , D. A. G. ., Devnikar , R. R. S. ., Patchala , D. S. ., & Gundapaneni , S. . (2025). A Meta Multi-Objective Reinforcement Learning Framework For Non-Orthogonal, Age-Optimized Information Dissemination in Vehicular ‎Networks. International Journal of Basic and Applied Sciences, 14(5), 268-281. https://doi.org/10.14419/hkfqf643