Study of Structural Relationship between Vectors Using ‎Hypercube Interconnection Network

  • Authors

    • Rakesh Kumar Katare Department of Computer Science, Awadhesh Pratap Singh University, Rewa (MP) 486003, India https://orcid.org/0009-0002-4981-4972
    • Surya Prakash Pandey Department of Computer Science, Awadhesh Pratap Singh University, Rewa (MP) 486003, India https://orcid.org/0009-0009-0938-7911
    • Charvi Katare Velocis Systems Pvt. Ltd. A-25, Sector-67, Noida-201301, Uttar Pradesh, India
    https://doi.org/10.14419/m7a8kz38

    Received date: May 14, 2025

    Accepted date: July 7, 2025

    Published date: August 11, 2025

  • Binary Relation; Connectivity Matrix; Interconnection Network; Structural Relationship; Tripod; Vector
  • Abstract

    In this paper, we have studied the structural relationship of nodes and edges of a Hypercube of degree n. ‎By using different combinations of vectors of the connectivity matrix, we derived properties of binary ‎relations of sets of vertices and edges, and developed an algebraic system of switching for the development ‎of efficient communication algorithms.

  • References

    1. Pattanayak, D., Tripathy, Devashreel, 2014. Star-Mobius Cube: A New Interconnection Topology for Large Scale Parallel Processing, International Journal of Emerging Technologies in Computational and Applied Sciences, 7(1). https://api.semanticscholar.org/CorpusID:18807747.
    2. Muhammad Imran, Sakander Hayat, Muhammad Yasir Hayat Mailk, 2014. On topological indices of certain interconnection networks, Applied Math-ematics and Computation, Volume 244, Pages 936-951. https://doi.org/10.1016/j.amc.2014.07.064.
    3. Bhuyan and Agrawal, 1984. Generalized Hypercube and Hyperbus Structures for a Computer Network, IEEE Transactions on Computers, vol. C-33, no. 4, pp. 323-333. https://doi.org/10.1109/TC.1984.1676437.
    4. Katare, R.K., Singh, N., Pandey, P., Katare, C., 2021, Study of Communication Structural Relationship between Processors of Parallel and Distribut-ed System, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, Volume 7, Issue 5. https://doi.org/10.32628/CSEIT21759.
    5. Tiwari, S., Bhardwaj, M., Katare, R.K., 2021. Study of Communication Pattern for Perfect Difference Network. In: Bajpai, M.K., Kumar Singh, K., Giakos, G. (eds) Machine Vision and Augmented Intelligence—Theory and Applications. Lecture Notes in Electrical Engineering, vol 796. Springer, Singapore. https://doi.org/10.1007/978-981-16-5078-9_11.
    6. Y-Chuang Chen, Jimmy J.M. Tan, 2007. Restricted connectivity for three families of interconnection networks, Applied Mathematics and Computa-tion, Volume 188, Issue 2, Pages 1848-1855. https://doi.org/10.1016/j.amc.2006.11.085.
    7. Katare, R.K., Premikar, S., Singh, N., Tiwari, S., Katare, C. 2019. Vector Operation on Nodes of Perfect Difference Network Using Logical Opera-tors. International Journal of Advanced Research in Computer Science, 10(6), 29–39. https://doi.org/10.26483/ijarcs.v10i6.6485.
    8. Singh, Sarini, Singh, Prof. Neelam, 2024. Investigating Binary Relationships Among Vectors in Interconnection Networks for Parallel and Distributed Systems, International Research Journal of Modernization in Engineering Technology and Science, Vol.06, Issue09. https://www.irjmets.com/uploadedfiles/paper//issue_9_september_2024/61300/final/fin_irjmets1725206675.pdf.
    9. Pandey, Surya Prakash, Katare, Rakesh Kumar, 2018. Application of Fixed-Point Algorithm in Parallel Systems, International Journal of Computer Sciences and Engineering, Vol.6, Issue 6. https://doi.org/10.26438/ijcse/v6i6.714719.
    10. Wen-Sz Chiue, Bih-Sheue Shieh, 1999. On connectivity of the Cartesian product of two graphs, Applied Mathematics and Computation, Volume 102, Issues 2–3, Pages 129-137. https://doi.org/10.1016/S0096-3003(98)10041-3.
    11. Y-Chuang Chen et al., 2003. Super-connectivity and super-edge-connectivity for some interconnection networks, Applied Mathematics and Compu-tation, Volume 140, Issues 2–3, Pages 245-254. https://doi.org/10.1016/S0096-3003(02)00223-0
    12. Zhi Kong et al., 2009. Comment on “A fuzzy soft set theoretic approach to decision making problems”, Journal of Computational and Applied Math-ematics, Volume 223, Issue 2, Pages 540-542 https://doi.org/10.1016/j.cam.2008.01.011.
    13. Da-Wei Yang et al., 2023. Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube, Applied Mathematics and Computation, Vol-ume 452, 128075. https://doi.org/10.1016/j.amc.2023.128075
    14. Liu, M., 2024. Cycle Embedding in Enhanced Hypercubes with Faulty Vertices. Symmetry, 16(1), 44. https://doi.org/10.3390/sym16010044.
    15. Yang, R., & Yuan, M., 2023. The Structural Properties of (2, 6)-Fullerenes. Symmetry, 15(11), 2078. https://doi.org/10.3390/sym15112078.
    16. Nam Sung Woo and Agrawala, 1985. A Symmetric Tree Structure Interconnection Network and its Message Traffic," IEEE Transactions on Comput-ers, vol. C-34, no. 8, pp. 765-769. https://doi.org/10.1109/TC.1985.1676626
    17. Tiwari, S., Saket, P, Katare, R.K., Katare, C., Tiwari, A., Gautam, K., 2020. Study of Data Structure and Symmetry Properties for Interconnection Network. Research Journal of Science Engineering and Technology, Vol.10. https://doi.org/10.32804/RJSET.
    18. Song, J., Qi, X., & Cao, Z., 2023. An Independent Cascade Model of Graph Burning. Symmetry, 15(8), 1527. https://doi.org/10.3390/sym15081527.
    19. J.P. Tremblay, R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill Edition 1997.
    20. Choudhary, S., Sharma, H. and Patkar, S., 2011. Optimal folding of data flow graphs based on finite projective geometry using lattice embedding, Discrete Mathematics, Algorithms and Applications.
    21. Choudhary, S., Sharma, H., and Patkar, S., 2013. Optimal folding of data flow graphs based on finite projective geometry using vector space partition-ing. Discrete Mathematics, Algorithms and Applications, 05(04), 1350036. https://doi.org/10.1142/S1793830913500365.
    22. Rakesh Kumar Katare and N. S. Chaudhari, 2009. Study of Topological Property of Interconnection Networks and its Mapping to Sparse Matrix Model, International Journal of Computer Science and Applications, 6(1):26–39. https://api.semanticscholar.org/CorpusID:12150831.
    23. Kantorovich, L.V., Akilov, G.P., in Functional Analysis (Second Edition), 1982. https://www.sciencedirect.com/topics/mathematics/vector-lattice.
    24. Merriam-Webster, Antisymmetric relation, Merriam-Webster.com, https://www.merriam-webster.com/dictionary/antisymmetric , 2025. (Accessed 14 Mar. 2025).
    25. V. D. Shmatkov, Incidence algebras over lattices, 1992. Russian Mathematical Surveys, Volume 47, Issue 4, 230–231, https://doi.org/10.1070/RM1992v047n04ABEH000933
    26. Mengjie Lv, Jianxi Fan, Jingya Zhou, Baolei Cheng, Xiaohua Jia, 2020. The extra connectivity and extra diagnosability of regular interconnection networks, Theoretical Computer Science, Volume 809, Pages 88-102, ISSN 0304-3975. https://doi.org/10.1016/j.tcs.2019.12.001.
    27. Ting Lan, Huazhong Lü, 2025. Hamiltonian cycles of balanced hypercube with disjoint faulty edges, Information Processing Letters, Volume 187, 106518, ISSN 0020-0190 https://doi.org/10.1016/j.ipl.2024.106518.
    28. Nengjin Zhuo, Shumin Zhang, Jou-Ming Chang, Chengfu Ye, 2025. Non-inclusive diagnosability of folded hypercube-like networks, Discrete Ap-plied Mathematics, Volume 364, Pages 237-246, ISSN 0166-218X, https://doi.org/10.1016/j.dam.2025.01.006
    29. Noguez, C.A., et al., 2024. The Hypercube Model: Digital Inclusion. EDULEARN24. https://library.iated.org/view/ASTENGONOGUEZ2024HYP.
    30. StalinMary, R., Rajasingh, I. (2025). Minimum Vertex Cover in Extended Fibonacci Cubes. In: Rajasingh, I., Mary Arul, S., Grace Thomas, D. (eds) Applied Computational Mathematics. ICCE 2023. Springer Proceedings in Mathematics & Statistics, vol 480. Springer, Cham. https://doi.org/10.1007/978-3-031-77764-6_10.
  • Downloads

  • How to Cite

    Katare, R. K., Pandey , S. P. ., & Katare, C. (2025). Study of Structural Relationship between Vectors Using ‎Hypercube Interconnection Network. International Journal of Basic and Applied Sciences, 14(4), 320-329. https://doi.org/10.14419/m7a8kz38