Integrated Antenna Design with SAW Filters

  • Authors

    • K. R. Saranya Department of Computer Science and Engineering, School of Computing, SRM Institute of Science and Technology, Tiruchirapalli, Tamil ‎Nadu 621105, India
    • D. Kalaiyarasi Department of Electronics and Communication Engineering, Panimalar Engineering College, Chennai, Tamil Nadu 600123, India
    • D. Sugumar Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences (Deemed to be a University), ‎Coimbatore, Tamil Nadu 641114, India
    • Jeba Johannah J Department of Electronics and Communication Engineering, St. Joseph's Institute of Technology, Chennai, Tamil Nadu 600119, India
    • S. Dhivya Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India
    • Subramanyam Kunisetti Department of Computer Science and Engineering (Data Science), R.V.R. & J.C. College of Engineering, Guntur, Andhra Pradesh ‎‎522019, India‎
    • A. Thilagavathy Department of Computer Science and Engineering, R.M.K. Engineering College, Kavaraipettai, Tamil Nadu 601206, India
    • T. V. V. ‎ Satyanarayana Department of Electronics and Communication Engineering, School of Engineering, Mohan Babu University, Tirupati, Andhra Pradesh ‎‎517102, India
    https://doi.org/10.14419/fwcbdd76

    Received date: May 11, 2025

    Accepted date: June 18, 2025

    Published date: June 30, 2025

  • Fractal Antenna; Ultra-Wideband (UWB); Antipodal Vivaldi Antenna; Ground-Penetrating Radar (GPR); Humanitarian Demining.
  • Abstract

    This work presents the design, simulation, and fabrication of a branch-and-leaf fractal Antipodal Vivaldi antenna, demonstrating a 60% size ‎reduction compared to a conventional counterpart. Despite a 15% decrease in radiation characteristics, the antenna satisfies the ultra-‎wideband (UWB) requirements essential for applications such as ground-penetrating radar (GPR) systems used in humanitarian demining ‎in Colombia. The enhanced performance is attributed to the additional resonant modes introduced by the fractal geometry, which increases ‎gain across multiple frequencies. The resulting miniaturization facilitates a reduced form factor for GPR systems, improving field deploy-‎ment and operational efficiency. Future work includes a parametric study of alternative fractal geometries, such as Minkowski Island ‎designs, to further optimize performance and integration into advanced field measurement systems for sustained demining operations‎.

  • References

    1. Hsu, T. H., Tseng, K. J., & Li, M. H. (2021). Thin-film lithium niobate-on-insulator (LNOI) shear horizontal surface acoustic wave resonators. Jour-nal of Micromechanics and Microengineering, 31(5), 054003. https://doi.org/10.1088/1361-6439/abf1b5.
    2. Xu, H., Fu, S., Shen, J., Lu, Z., Su, R., Wang, R., Song, C., Zeng, F., & Pan, F. (2022). Large-range spurious mode elimination for wideband SAW filters on LiNbO₃/SiO₂/Si platform by LiNbO₃ cut angle modulation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(10), 3117–3125. https://doi.org/10.1109/TUFFC.2022.3152010.
    3. Shen, J., Fu, S., Su, R., Xu, H., Lu, Z., Xu, Z., Luo, J., Zeng, F., Song, C., Wang, W., et al. (2021). High-performance surface acoustic wave devic-es using LiNbO₃/SiO₂/SiC multilayered substrates. IEEE Transactions on Microwave Theory and Techniques, 69(8), 3693–3705. https://doi.org/10.1109/TMTT.2021.3077261.
    4. Ren, Z., Xu, J., Le, X., & Lee, C. (2021). Heterogeneous wafer bonding technology and thin-film transfer technology-enabling platform for the next generation applications beyond 5G. Micromachines, 12(8), 946. https://doi.org/10.3390/mi12080946.
    5. Butaud, E., Tavel, B., Ballandras, S., Bousquet, M., Drouin, A., Huyet, I., Courjon, E., Ghorbel, A., Reinhardt, A., Clairet, A., et al. (2020). Smart CutTM Piezo on Insulator (POI) substrates for high performances SAW components. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS) (pp. 4–7). Las Vegas, NV, USA. https://doi.org/10.1109/IUS46767.2020.9251517.
    6. Xu, H., Fu, S., Su, R., Shen, J., Zeng, F., Song, C., & Pan, F. (2021). Enhanced coupling coefficient in dual-mode ZnO/SiC surface acoustic wave devices with partially etched piezoelectric layer. Applied Sciences, 11(14), 6383. https://doi.org/10.3390/app11146383.
    7. Su, R., Fu, S., Lu, Z., Shen, J., Xu, H., Mao, H., Xu, Z., Song, C., Zeng, F., & Wang, W., et al. (2021). Near 30% fractional bandwidth surface acoustic wave filters with novel electrode configuration. Progress in Natural Science: Materials International, 31(6), 852–857. https://doi.org/10.1016/j.pnsc.2021.08.001.
    8. Su, R., Fu, S., Lu, Z., Shen, J., Xu, H., Xu, Z., Wang, R., Song, C., Zeng, F., & Wang, W., et al. (2022). Over GHz bandwidth SAW filter based on 32° Y-X LN/SiO₂/poly-Si/Si heterostructure with multi-layer electrode modulation. Applied Physics Letters, 120(25), 253501. https://doi.org/10.1063/5.0092767.
    9. Kadota, M., & Tanaka, S. (2018). Wideband acoustic wave resonators composed of hetero acoustic layer structure. Japanese Journal of Applied Physics, 57(7), 07LD12. https://doi.org/10.7567/JJAP.57.07LD12.
    10. Hsu, T. H., Tseng, K. J., & Li, M. H. (2020). Large coupling acoustic wave resonators based on LiNbO₃/SiO₂/Si functional substrate. IEEE Electron Device Letters, 41(11), 1825–1828. https://doi.org/10.1109/LED.2020.3030797.
    11. Su, R., Shen, J., Lu, Z., Xu, H., Niu, Q., & Xu, Z. (2021). Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO₃/SiO₂/Si structure. IEEE Electron Device Letters, 42(3), 438–441. https://doi.org/10.1109/LED.2021.3051298.
    12. Zhang, S., Lu, R., Zhou, H., Link, S., Yang, Y., Li, Z., Huang, K., Ou, X., & Gong, S. (2020). Surface acoustic wave devices using lithium niobate on silicon carbide. IEEE Transactions on Microwave Theory and Techniques, 68(9), 3653–3666. https://doi.org/10.1109/TMTT.2020.3006294.
    13. Shen, J., Fu, S., Su, R., Xu, H., Lu, Z., Zhang, Q., Zeng, F., Song, C., Wang, W., & Pan, F. (2022). SAW filters with excellent temperature stability and high power handling using LiTaO₃/SiC bonded wafers. Journal of Microelectromechanical Systems, 31(2), 186–193. https://doi.org/10.1109/JMEMS.2021.3137928.
    14. Bahamonde, J. A., & Kymissis, I. (2020). A reconfigurable surface acoustic wave filter on ZnO/AlGaN/GaN heterostructure. IEEE Transactions on Electron Devices, 67(10), 4507–4514. https://doi.org/10.1109/TED.2020.3018697.
    15. Azarnaminy, A. F., Jiang, J., & Mansour, R. R. (2021). Switched dual-band SAW filter using vanadium oxide switches. In Proceedings of the 2021 IEEE MTT-S International Microwave Symposium (IMS) (pp. 677–680). Atlanta, GA, USA. https://doi.org/10.1109/IMS19712.2021.9574799.
    16. Yang, Y., Gao, L., & Gong, S. (2021). A miniaturized acoustic dual-band bandpass filter using thin-film lithium niobate. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS) (pp. 5–8). Xi’an, China. https://doi.org/10.1109/IUS52206.2021.9593792.
    17. Luo, T., Liu, Y., Zou, Y., Zhou, J., Liu, W., Wu, G., Cai, Y., & Sun, C. (2022). Design and optimization of the dual-mode Lamb wave resonator and dual-passband filter. Micromachines, 13(1), 87. https://doi.org/10.3390/mi13010087.
    18. Zou, Y., Nian, L., Cai, Y., Liu, Y., Tovstopyat, A., Liu, W., & Sun, C. (2020). Dual-mode thin film bulk acoustic wave resonator and filter. Journal of Applied Physics, 128(19), 194503. https://doi.org/10.1063/5.0028702.
    19. Phani Kumar, K. V., Velidi, V. K., Althuwayb, A. A., & Rama Rao, T. (2021). Microstrip dual-band bandpass filter with wide bandwidth using paper substrate. IEEE Microwave and Wireless Components Letters, 31(9), 833–836. https://doi.org/10.1109/LMWC.2021.3077879.
    20. Acosta, L., Guerrero, E., Verdu, J., & de Paco, P. (2022). Topology assessment for dual-band filters based on acoustic wave resonators. IEEE Transactions on Microwave Theory and Techniques. (In press). https://doi.org/10.1109/TMTT.2022.3222327.
    21. Campanella, H., Qian, Y., Romero, C. O., Wong, J. S., Giner, J., & Kumar, R. (2021). Monolithic multi-band MEMS RF front-end module for 5G mobile. Journal of Microelectromechanical Systems, 30(1), 72–80. https://doi.org/10.1109/JMEMS.2020.3036379.
    22. Liu, Y., Cai, Y., Zhang, Y., Tovstopyat, A., Liu, S., & Sun, C. (2020). Materials, design, and characteristics of bulk acoustic wave resonator: A re-view. Micromachines, 11(7), 630. https://doi.org/10.3390/mi11070630.
    23. Campanella, F., Del Giudice, M., Thrassou, A., & Vrontis, D. (2020). Ambidextrous organizations in the banking sector: An empirical verification of banks’ performance and conceptual development. International Journal of Human Resource Management, 31(2), 272–302. https://doi.org/10.1080/09585192.2016.1239122.
    24. Khanna, G., & Sharma, N. (2016). Fractal antenna geometries: A review. International Journal of Computer Applications, 153(7), 29–32. https://doi.org/10.5120/ijca2016912106.
    25. Babu, S. S., Mourad, A.-H. I., Harib, K. H., & Vijayavenkataraman, S. (2022). Recent developments in the application of machine learning towards accelerated predictive multiscale design and additive manufacturing. Virtual and Physical Prototyping, 18(1). https://doi.org/10.1080/17452759.2022.2141653.
  • Downloads

  • How to Cite

    Saranya , K. R. ., Kalaiyarasi , D. ., Sugumar, D. ., J, J. J. ., Dhivya , S. ., Kunisetti , S. ., Thilagavathy, A. . ., & Satyanarayana , T. V. V. ‎. (2025). Integrated Antenna Design with SAW Filters. International Journal of Basic and Applied Sciences, 14(2), 551-562. https://doi.org/10.14419/fwcbdd76