Development of A Comprehensive IoT-Based Monitoring Application for High-Risk Pregnancies Enhancing Maternal and Fetal Health Outcomes
-
https://doi.org/10.14419/wf3p9b62
Received date: May 10, 2025
Accepted date: June 18, 2025
Published date: June 30, 2025
-
Perinatal Monitoring; Maternal Healthcare; Mobile Application; Real-Time Alerts -
Abstract
This paper presents the design, development, and testing of MAVATI, a mobile health application focused on perinatal monitoring for ex-expectant mothers and healthcare professionals. The system includes real-time monitoring of biomedical parameters, alert generation (both manual and automatic), and a personalized recommendation module. Developed as a minimum viable product (MVP) for both patient and physician interfaces, the application was evaluated through usability testing and load testing to validate its performance and user-friendliness. Usability tests demonstrated intuitive navigation and effective interaction with key functionalities, while load testing using Apache JMeter confirmed the system's scalability and reliability under concurrent access. The results indicate that MAVATI is a responsive and user-centered solution capable of supporting maternal healthcare monitoring. Further clinical validation is recommended to assess its real-world effectiveness and potential for data-driven research.
-
References
- Shafqat, W.; Malik, S.; Lee, K.-T.; Kim, D.-H. PSO-based optimized ensemble learning and feature selection approach for efficient energy fore-cast. Electronics 2021, 10, 2188. https://doi.org/10.3390/electronics10182188.
- Khaire, U.M.; Dhanalakshmi, R. Stability of Feature Selection Algorithm: A Review. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1060–1073. https://doi.org/10.1016/j.jksuci.2019.06.012.
- Rostami, M.; Berahmand, K.; Nasiri, E.; Forouzandeh, S. Review of swarm intelligence-based feature selection methods. Eng. Appl. Artif. In-tell. 2021, 100, 104210. https://doi.org/10.1016/j.engappai.2021.104210.
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to machine learning, neural networks, and deep learn-ing. Transl. Vis. Sci. Technol. 2020, 9, 14.
- Alam, T.M.; Shaukat, K.; Hameed, I.A.; Luo, S.; Sarwar, M.U.; Shabbir, S.; Li, J.; Khushi, M. An Investigation of Credit Card Default Prediction in the Imbalanced Datasets. IEEE Access 2020, 8, 201173–201198. https://doi.org/10.1109/ACCESS.2020.3033784.
- Allahem, H.; Sampalli, S. Automated uterine contractions pattern detection framework to monitor pregnant women with a high risk of premature labour. Inform. Med. Unlocked 2020, 20, 100404. https://doi.org/10.1016/j.imu.2020.100404.
- Saarikko, J.; Niela-Vilén, H.; Ekholm, E.; Hamari, L.; Azimi, I.; Liljeberg, P.; Rahmani, A.M.; Löyttyniemi, E.; Axelin, A. Continuous 7-month in-ternet of things-based monitoring of health parameters of pregnant and postpartum women: Prospective observational feasibility study. JMIR Form. Res. 2020, 4, e12417. https://doi.org/10.2196/12417.
- Machorro-Cano, I.; Olmedo-Aguirre, J.O.; Alor-Hernández, G.; Rodríguez-Mazahua, L.; Sánchez-Morales, L.N.; Pérez-Castro, N. Cloud-Based Platforms for Health Monitoring: A Review. Informatics 2024, 11, 2. https://doi.org/10.3390/informatics11010002.
- Al Khatib, I.; Shamayleh, A.; Ndiaye, M. Healthcare and the internet of medical things: Applications, trends, key challenges, and proposed resolu-tions. Informatics 2024, 11, 47. https://doi.org/10.3390/informatics11030047.
- Gong, L.; Xiao, Z.; Xu, L.; Ding, Y.; Zou, Z.; Zheng, L. An IoT-based wearable labor progress monitoring system for remote evaluation of admis-sion time to hospital. IEEE J. Biomed. Health Inform. 2023, 27, 3037–3048. https://doi.org/10.1109/JBHI.2023.3264251.
- Pilosof, N.P.; Barrett, M.; Oborn, E.; Barkai, G.; Pessach, I.M.; Zimlichman, E. Inpatient telemedicine and new models of care during COVID-19: Hospital design strategies to enhance patient and staff safety. Int. J. Environ. Res. Public Health 2021, 18, 8391. https://doi.org/10.3390/ijerph18168391.
- Xu, J.; Zhang, Y.; Wang, L.; Chen, X. Fetal movement detection by wearable accelerometer duo based on machine learning. IEEE Sens. J. 2022, 22, 11526–11534. https://doi.org/10.1109/JSEN.2022.3172451.
- Qin, M.; Xu, Y.; Liang, Y.; Sun, T. A wearable fetal movement detection system for pregnant women. Front. Med. 2023, 10, 1160373. https://doi.org/10.3389/fmed.2023.1160373.
- Somathilake, E.; Delay, U.H.; Senanayaka, J.B.; Gunarathne, S.L.; Godaliyadda, R.I.; Ekanayake, M.P.; Wijayakulasooriya, J.; Rathnayake, C. As-sessment of fetal and maternal well-being during pregnancy using passive wearable inertial sensor. IEEE Trans. Instrum. Meas. 2022, 71, 4005111. https://doi.org/10.1109/TIM.2022.3175041.
- Georgieva-Tsaneva, G.; Cheshmedzhiev, K.; Tsanev, Y.-A.; Dechev, M.; Popovska, E. Healthcare Monitoring Using an Internet of Things-Based Cardio System. IoT 2025, 6, 10. https://doi.org/10.3390/iot6010010.
- Ouypornkochagorn, T.; Dankul, W.; Ratanasathien, L. Fetal movement detection with a wearable acoustic device. IEEE Sens. J. 2023, 23, 29357–29365. https://doi.org/10.1109/JSEN.2023.3326479.
- Ghosh, A.K.; Catelli, D.S.; Wilson, S.; Nowlan, N.C.; Vaidyanathan, R. Multi-modal detection of fetal movements using a wearable monitor. Inf. Fusion 2024, 103, 102124. https://doi.org/10.1016/j.inffus.2023.102124.
- Ouypornkochagorn, T.; Ratanasathien, L.; Dankul, W. A Portable Acoustic System for Fetal Movement Detection at Home. IEEE Sens. J. 2025, 25, 1478–1486. https://doi.org/10.1109/JSEN.2024.3486710.
- L. Floridi and M. Taddeo, “What is data ethics?” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 376, no. 2133, p. 20180081, 2018. https://doi.org/10.1098/rsta.2018.0081.
- C. Wang, A.L.V. Johansson, C. Nyberg, A. Pareek, C. Almqvist, S. Hernandez-Diaz, and A.S. Oberg, “Prediction of Pregnancy-Related Complica-tions in Women Undergoing Assisted Reproduction, Using Machine Learning Methods,” Fertil. Steril., vol. 122, pp. 95–105, 2024. https://doi.org/10.1016/j.fertnstert.2024.02.024.
- M.A. Rahman, R.M. Noor, S. Mallik, N.K. Santa, S. Deb, and A. Pathak, “Classification of Health Risk Levels for Pregnant Women Using Sup-port Vector Machine (SVM) Algorithm,” IOSR J. Comput. Eng., vol. 26, pp. 7–17, 2024.
- A.O. Khadidos, F. Saleem, S. Selvarajan, Z. Ullah, and A.O. Khadidos, “Ensemble Machine Learning Framework for Predicting Maternal Health Risk During Pregnancy,” Sci. Rep., vol. 14, p. 21483, 2024. https://doi.org/10.1038/s41598-024-71934-x.
- D.V. Dimitrov, “Medical Internet of Things and Big Data in Healthcare,” Healthc. Inform. Res., vol. 22, no. 3, pp. 156–163, Jul. 2016, https://doi.org/10.4258/hir.2016.22.3.156.
- Saarikko, J.; Niela-Vilen, H.; Ekholm, E.; Hamari, L.; Azimi, I.; Liljeberg, P.; Rahmani, A.M.; Löyttyniemi, E.; Axelin, A. Continuous 7-month In-ternet of Things–based monitoring of health parameters of pregnant and postpartum women: Prospective observational feasibility study. JMIR Form. Res. 2020, 4, e12417. https://doi.org/10.2196/12417.
-
Downloads
-
How to Cite
Matharasi , P. B. ., Selvam , P. ., Sharma, H. ., Sugumar, D. . ., Kumar, M. V. . ., Rosaline, S. . ., Mounika, A. ., & Kanth , T. V. R. . (2025). Development of A Comprehensive IoT-Based Monitoring Application for High-Risk Pregnancies Enhancing Maternal and Fetal Health Outcomes. International Journal of Basic and Applied Sciences, 14(2), 520-534. https://doi.org/10.14419/wf3p9b62
