Privacy-Preserving Deep Learning Models For Alcoholism Diagnosis Through EEG Data Analysis Using Differential Privacy Mechanisms
-
https://doi.org/10.14419/7gtxb837
Received date: May 10, 2025
Accepted date: June 18, 2025
Published date: June 30, 2025
-
Electroencephalogram (EEG); Gaussian Differential Privacy (GDP); Differential Privacy; Deep learning -
Abstract
Alcoholism diagnosis through electroencephalogram (EEG) data analysis offers a promising alternative to traditional methods by identifying specific brain activity patterns associated with alcohol dependency. While deep learning techniques have demonstrated high accuracy in classifying EEG signals, privacy concerns related to sensitive medical data remain prevalent. Ensuring the privacy of patient data is critical for building trust and enabling the adoption of these tools in real-world clinical settings. This study develops deep learning models with enhanced privacy guarantees by incorporating differential privacy mechanisms, including (ϵ, δ)-Differential Privacy and Gaussian Differential Privacy (GDP). We compare their efficacy in preserving data privacy while maintaining model utility. Experiments show that convolu-tional and long-short-term-memory models optimized with Adam excel in utility and stability. GDP outperforms (ϵ, δ)-DP by requiring less noise, while DP-Adam surpasses DP-SGD in privacy and utility, particularly for fast convergence. Larger datasets further enhance this balance, emphasizing the importance of effective privacy mechanisms and sufficient data. By balancing privacy and utility, this work con-contributes a novel approach to privacy-preserving AI for sensitive health applications, emphasizing scalable models that maintain diagnostic accuracy.
-
References
- Akbari, H., Sadiq, M. T., Payan, M., Esmaili, S. S., Baghri, H., & Bagheri, H. (2021). Depression detection based on geometrical features extracted from SODP shape of EEG signals and binary PSO. Traitement du Signal, 38, 43–46. https://doi.org/10.18280/ts.380102.
- Shi, W., Feng, H., Zhang, X., & Yeh, C.-H. (2023). Amplitude modulation multiscale entropy characterizes complexity and brain states. Chaos, Solitons & Fractals, 173, 113646. https://doi.org/10.1016/j.chaos.2023.113646.
- Sadiq, M. T., Akbari, H., Rehman, A. U., Nishtar, Z., Masood, B., Ghazvini, M., Hamedi, N., & Kaabar, M. K. A. (2021). Exploiting feature selec-tion and neural network techniques for identification of focal and nonfocal EEG signals in TQWT domain. Journal of Healthcare Engineering, 2021, 1–24. https://doi.org/10.1155/2021/6283900.
- Yeh, C. H., Zhang, C., Shi, W., Lo, M. T., Tinkhauser, G., & Oswal, A. (2023). Cross-frequency coupling and intelligent neuromodulation. Cyborg and Bionic Systems, 4, 34. https://doi.org/10.34133/cbsystems.0034.
- Sadiq, M. T., Akbari, H., Siuly, S., Li, Y., & Wen, P. (2022). Alcoholic EEG signals recognition based on phase space dynamic and geometrical features. Chaos, Solitons & Fractals, 158, 112036. https://doi.org/10.1016/j.chaos.2022.112036.
- Cohen, S., Katz, O., Presil, D., Arbili, O., & Rokach, L. (2023). Ensemble learning for alcoholism classification using EEG signals. IEEE Sensors Journal, 23, 17714–17724. https://doi.org/10.1109/JSEN.2023.3279904.
- Pain, S., Roy, S., Sarma, M., & Samanta, D. (2023). Detection of alcoholism by combining EEG local activations with brain connectivity features and graph neural network. Biomedical Signal Processing and Control, 85, 104851. https://doi.org/10.1016/j.bspc.2023.104851.
- Salankar, N., Qaisar, S. M., Pławiak, P., Tadeusiewicz, R., & Hammad, M. (2022). EEG based alcoholism detection by oscillatory modes decompo-sition, second order difference plots and machine learning. Biocybernetics and Biomedical Engineering, 42, 173–186. https://doi.org/10.1016/j.bbe.2021.12.009.
- Anuragi, A., & Sisodia, D. (2020). Empirical wavelet transform based automated alcoholism detecting using EEG signal features. Biomedical Sig-nal Processing and Control, 57, 101777. https://doi.org/10.1016/j.bspc.2019.101777.
- Sadiq, M. T., Aziz, M. Z., Almogren, A., Yousaf, A., Siuly, S., & Rehman, A. U. (2022). Exploiting pre-trained CNN models for the development of an EEG-based robust BCI framework. Computers in Biology and Medicine, 143, 105242. https://doi.org/10.1016/j.compbiomed.2022.105242.
- Browarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelanczyk, E. J. (2021). Comparison of smoothing filters’ influence on quality of data recorded with the Emotiv Epoc Flex brain–computer interface headset during audio stimulation. Brain Sciences, 11, 98. https://doi.org/10.3390/brainsci11010098.
- Anuragi, A., Sisodia, D., & Pachori, R. B. (2021). Automated FBSE-EWT based learning framework for detection of epileptic seizures using time-segmented EEG signals. Computers in Biology and Medicine, 136, 104708. https://doi.org/10.1016/j.compbiomed.2021.104708.
- Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2021). Classification of alcoholic EEG signals using a deep learning method. IEEE Sensors Journal, 21, 3552–3560. https://doi.org/10.1109/JSEN.2020.3026830.
- Li, H., & Wu, L. (2022). EEG classification of normal and alcoholic by deep learning. Brain Sciences, 12(6), 819. https://doi.org/10.3390/brainsci12060778.
- Ahmadi, N., Pei, Y., & Pechenizkiy, M. (2017). Detection of alcoholism based on EEG signals and functional brain network features extraction. IEEE International Conference Proceedings, 2017-June, 179–184. https://doi.org/10.1109/CBMS.2017.46.
- Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2021). Classification of alcoholic EEG signals using a deep learning method. IEEE Sensors Journal, 21(3), 3552–3560. https://doi.org/10.1109/JSEN.2020.3026830.
- Balle, B., Barthe, G., Gaboardi, M., & Hsu, J. (2020). Privacy amplification by subsampling: Tight analyses via couplings and divergences. Journal of Privacy and Confidentiality, 10(S1), 1–39. https://doi.org/10.29012/jpc.726.
- Sherstinsky, J. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phe-nomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306.
- Brunnhuber, F., Slater, J., Goyal, S., Amin, D., Thorvardsson, G., Freestone, D. R., & Richardson, M. P. (2020). Past, present and future of home video-electroencephalographic telemetry: A review of the development of in-home video-electroencephalographic recordings. Epilepsia, 61(S1), S3–S10. https://doi.org/10.1111/epi.16578.
- Ko, L. W., Komarov, O., Lai, W. K., Liang, W. G., & Jung, T. P. (2020). Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. Journal of Neural Engineering, 17(3), 036015. https://doi.org/10.1088/1741-2552/ab909f.
- Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography Con-ference (TCC), Lecture Notes in Computer Science (Vol. 3876, pp. 265–284). Springer. https://doi.org/10.1007/11681878_14.
- Porjesz, B., Rangaswamy, M., Kamarajan, C., Jones, K. A., Padmanabhapillai, A., & Begleiter, H. (2005). The utility of neurophysiological markers in the study of alcoholism. Clinical Neurophysiology, 116(5), 993–1018. https://doi.org/10.1016/j.clinph.2004.12.016.
- Floridi, L., & Taddeo, M. (2018). What is data ethics? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180081. https://doi.org/10.1098/rsta.2018.0081
-
Downloads
-
How to Cite
M, V. ., Reddy , A. S. ., Imambi, S. .Sagar ., Ameta, G. K. ., Thaiyalnayaki, K. . ., Logesh , S. K. ., Dhivya, S. . ., & Muthulakshmi, K. . (2025). Privacy-Preserving Deep Learning Models For Alcoholism Diagnosis Through EEG Data Analysis Using Differential Privacy Mechanisms. International Journal of Basic and Applied Sciences, 14(2), 493-503. https://doi.org/10.14419/7gtxb837
