Wireless Sensor Networks with Dynamic Advanced Node Selection for Longer Network Lifetime in Energy Hole Evolution
-
https://doi.org/10.14419/z4f5hn69
Received date: May 6, 2025
Accepted date: May 18, 2025
Published date: June 10, 2025
-
Wireless Sensor Networks; Traffic Volume; Energy Usage; Network Lifetime; Energy Hole Issue -
Abstract
Wireless sensor networks (WSNs) that collect data using battery-powered sensor nodes that sometimes detect their surroundings and send the samples they acquire to a sink node are evaluated using network lifespan, a critical performance metric. The network's performance deteriorates due to two main issues. One is the void hole that develops in a certain area due to the forwarder nodes not being available. The other is the existence of an energy hole brought on by an uneven load of data traffic on intermediary nodes. This research aims to identify the boundaries of an energy hole in a WSN that collects data and offers a mathematical framework to determine the network's lifetime from the beginning to the end. Theoretically, the traffic load, energy usage, and sensor node longevity are calculated throughout the entire network lifetime. In this paper, we present a scientific approach to determine the energy opening limit in an information-gathering WSN and measure the entire organization's lifetime from network introduction till it is completely crippled. Experimental implementations of the proposed framework show significant energy savings, network lifespan extension, and QoS improvements. AI-Driven Power Optimization in IoT-enabled WSN is proven effective and flexible.
-
References
- Balkhande, B., Ghule, G., Meshram, V. H., Anandpawar, W. N., Gaikwad, V. S., & Ranjan, N. (2023). Artificial Intelligence Driven Power Optimiza-tion in IOT-Enabled Wireless Sensor Networks. Journal of Electrical Systems, 19(2). https://doi.org/10.52783/jes.689.
- Abd, M. A., Al-Rubeaai, S. F. M., Singh, B. K., Tepe, K. E., & Benlamri, R. (2015). Extending wireless sensor network lifetime with global energy bal-ance. IEEE Sensors Journal, 15(9), 5053-5063. https://doi.org/10.1109/JSEN.2015.2432114.
- Ren, J., Zhang, Y., Zhang, K., Liu, A., Chen, J., & Shen, X. S. (2015). Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE transactions on industrial informatics, 12(2), 788-800. https://doi.org/10.1016/j.jpdc.2011.05.003.
- Liu, A. F., Zhang, P. H., & Chen, Z. G. (2011). Theoretical analysis of the lifetime and energy hole in cluster based wireless sensor networks. Journal of Parallel and Distributed Computing, 71(10), 1327-1355. https://doi.org/10.1016/j.jpdc.2011.05.003.
- Liu, A., Jin, X., Cui, G., & Chen, Z. (2013). Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. In-formation Sciences, 230, 197-226. https://doi.org/10.1016/j.ins.2012.12.037
- Xiong, Y., Chen, G., Lu, M., Wan, X., Wu, M., & She, J. (2019). A two-phase lifetime-enhancing method for hybrid energy-harvesting wireless sensor network. IEEE Sensors Journal, 20(4), 1934-1946. https://doi.org/10.1109/JSEN.2019.2948620.
- Devi, S. S., Kuruba, C., Nam, Y., & Abouhawwash, M. (2023). Hybrid optimisation with black hole algorithm for improving network lifespan. Intell. Autom. Soft Comput., 35(2), 1873-1887. https://doi.org/10.32604/iasc.2023.025504.
- Ezhilarasi, M., & Krishnaveni, V. (2018). A survey on wireless sensor network: energy and lifetime perspective. Taga J, 14(1), 3099-3113. https://doi.org/10.3390/s17071677.
- Ashween, R., Ramakrishnan, B., & Milton Joe, M. (2020). Energy efficient data gathering technique based on optimal mobile sink node selection for improved network life time in wireless sensor network (WSN). Wireless Personal Communications, 113(4), 2107-2126. https://doi.org/10.1007/s11277-020-07309-y.
- Wadud, Z., Javaid, N., Khan, M. A., Alrajeh, N., Alabed, M. S., & Guizani, N. (2017). Lifetime maximization via hole alleviation in iot enabling heter-ogeneous wireless sensor networks. Sensors, 17(7), 1677. https://doi.org/10.3390/s17071677.
- Kim, T., Vecchietti, L. F., Choi, K., Lee, S., & Har, D. (2020). Machine learning for advanced wireless sensor networks: A review. IEEE Sensors Jour-nal, 21(11), 12379-12397. https://doi.org/10.1109/JSEN.2020.3035846.
- Sharmin, N., Karmaker, A., Lambert, W. L., Alam, M. S., & Shawkat, M. S. A. (2020). Minimizing the energy hole problem in wireless sensor networks: A wedge merging approach. Sensors, 20(1), 277. https://doi.org/10.3390/s20010277.
- Abose, T. A., Tekulapally, V., Megersa, K. T., Kejela, D. C., Daka, S. T., & Jember, K. A. (2024). Improving wireless sensor network lifespan with optimized clustering probabilities, improved residual energy LEACH and energy efficient LEACH for corner-positioned base stations. Heliyon, 10(14). https://doi.org/10.1016/j.heliyon.2024.e34382.
- John, J., & Rodrigues, P. (2022). A survey of energy-aware cluster head selection techniques in wireless sensor network. Evolutionary Intelligence, 15(2), 1109-1121. https://doi.org/10.1007/s12065-019-00308-4.
- Khan, M. N., Rahman, H. U., Almaiah, M. A., Khan, M. Z., Khan, A., Raza, M., ... & Khan, R. (2020). Improving energy efficiency with content-based adaptive and dynamic scheduling in wireless sensor networks. Ieee Access, 8, 176495-176520. https://doi.org/10.1109/ACCESS.2020.3026939.
-
Downloads
-
How to Cite
Kumar, S. S. ., & Murugan , D. S. . (2025). Wireless Sensor Networks with Dynamic Advanced Node Selection for Longer Network Lifetime in Energy Hole Evolution. International Journal of Basic and Applied Sciences, 14(2), 125-131. https://doi.org/10.14419/z4f5hn69
