An analysis of alternative machine learning and deep learningalgorithms for categorization and detection of various active network assaults
-
https://doi.org/10.14419/zywhgb37
Received date: May 4, 2025
Accepted date: May 23, 2025
Published date: May 26, 2025
-
Cyber-Attacks; DDoS; IDS; Machine Learning; Intrusion Detection; Deep Learning; Network Attacks -
Abstract
Attacks on networks have grown increasingly widespread because of the exponential growth in internet traffic and the rapid progress of network technology. A network attack occurs when a person gains illegal entry into a network. This includes any attempt to destroy the network, which might have disastrous consequences. Organizations depend significantly on tried-and-true network infrastructure security fea-tures like firewalls, encryption, and antivirus software. However, these strategies provide some defence against increasingly sophisti-cated attacks and viruses. Machine learning (ML) and deep learning (DL) are two important key concepts of artificial intelligence that gained popularity around the turn of the century. The focus on statistical methodologies and data in these techniques may considerably improve computing power by training computers to think like people. So, to address the inadequacies of non-intelligent solutions, computer scientists started to use intelligent approaches in network security. This article provides a thorough examination of numerous deep learning and machine learning methods for attack detection and classification.
-
References
- Abbas, S., Bouazzi, I., Ojo, S., Al Hejaili, A., Sampedro, G. A., Almadhor, A., & Gregus, M. (2024). Evaluating deep learning variants for cyber-attacks detection and multi-class classification in IoT networks. PeerJ Computer Science, 10, 1–23. https://doi.org/10.7717/peerj-cs.1793.
- Aftergood, S. (2017). The Cold War Online. Nature, 547, 30–31. https://www.nature.com/articles/547030a. https://doi.org/10.1038/547030a.
- Aguru, A.D.; Erukala, S.B. A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health informatics systems using deep learning. Inf. Sci. 2024, 662, 120209. [Google Scholar] [CrossRef] https://doi.org/10.1016/j.ins.2024.120209.
- Ahmad, I., Imran, M., Qayyum, A., Ramzan, M. S., & Alassafi, M. O. (2023). An Optimized Hybrid Deep Intrusion Detection Model (HD-IDM) for Enhancing Network Security. Mathematics, 11(21). https://doi.org/10.3390/math11214501.
- Aldhaheri, A.; Alwahedi, F.; F.; Ferrag, M.A.; Battah, A. Deep learning for cyber threat detection in IoT networks: A review. Internet Things Cyber-Phys. Syst. 2024, 4, 110–128. [Google Scholar] [CrossRef]. https://doi.org/10.1016/j.iotcps.2023.09.003.
- Al‐shehari, T., & Alsowail, R. A. (2021). An insider data leakage detection using one‐hot encoding, synthetic minority oversampling and machine learning techniques. Entropy, 23(10). https://doi.org/10.3390/e23101258.
- Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. In Journal of Big Data (Vol. 8, Issue 1). Springer International Publishing. https://doi.org/10.1186/s40537-021-00444-8.
- Anwer, M., Umer, M., Khan, S. M., & Waseemullah. (2021). Attack Detection in IoT using Machine Learning. Engineering, Technology and Ap-plied Science Research, 11(3), 7273–7278. https://doi.org/10.48084/etasr.4202.
- Bai, Y. (2022). RELU-Function and Derived Function Review. SHS Web of Conferences, 144, 02006. https://doi.org/10.1051/shsconf/202214402006.
- Bonaparte, Y. (2024). Global Financial Stability Index. In SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2753667.
- Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey. 1–50. http://arxiv.org/abs/1901.03407.
- Chatterjee, A., & Ahmed, B. S. (2022). IoT anomaly detection methods and applications: A survey. Internet of Things (Netherlands), 19(October 2021), 100568. https://doi.org/10.1016/j.iot.2022.100568.
- Churcher, A, Ullah, R, Ahmad, J, Ur Rehman, S, Masood, F, Gogate, M, Alqahtani, F, Nour, B & Buchanan, WJ 2021,An experimental analysis of attack classification using machine learning in IoT networks‘, Sensors, vol. 21, no. 2, p. 446. https://doi.org/10.3390/s21020446.
- Das, H. P., & Spanos, C. J. (2022). Improved dequantization and normalization methods for tabular data pre-processing in smart buildings. BuildSys 2022 - Proceedings of the 2022 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 168–177. https://doi.org/10.1145/3563357.3564072.
- De Lucia, M., Maxwell, P. E., Bastian, N. D., Swami, A., Jalaian, B., & Leslie, N. (2021). Machine learning raw network traffic detection. April, 24. https://doi.org/10.1117/12.2586114.
- G Ajeetha and G Madhu Priya. Machine learning based ddos attack detection. In 2019 Innovations in Power and Advanced Computing Technolo-gies (i-PACT), volume 1, pages 1–5. IEEE, 2019. https://doi.org/10.1109/i-PACT44901.2019.8959961.
- Hsu, C. M., Hsieh, H. Y., Prakosa, S. W., Azhari, M. Z., & Leu, J. S. (2019). Using long-short-term memory based convolutional neural networks for network intrusion detection. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 264). Springer International Publishing. https://doi.org/10.1007/978-3-030-06158-6_9.
- Ieracitano, C., Adeel, A., Morabito, F. C., & Hussain, A. (2020). A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing, 387, 51–62. https://doi.org/10.1016/j.neucom.2019.11.016.
- Judith, A., Kathrine, G. J. W., Silas, S., & J, A. (2023). Efficient Deep Learning-Based Cyber-Attack Detection for Internet of Medical Things De-vices †. Engineering Proceedings, 59(1). https://doi.org/10.3390/engproc2023059139.
- Kamyab, M., Liu, G., & Adjeisah, M. (2021). Attention-Based CNN and Bi-LSTM Model Based on TF-IDF and GloVe Word Embedding for Sentiment Analysis. Applied Sciences (Switzerland), 11(23). https://doi.org/10.3390/app112311255.
- Kaur, B.; Dadkhah, S.; Shoeleh, F.; Neto, E.C.; Xiong, P.; Iqbal, S.; Lamontagne, P.; Ray, S.; Ghorbani, A.A. Internet of Things (IoT) security da-taset evolution: Challenges and future directions. Internet Things 2023, 22, 100780. [Google Scholar] [CrossRef]. https://doi.org/10.1016/j.iot.2023.100780.
- Kim, A, Park, M & Lee, DH 2020, AI-IDS: Application of deep learning to real-time web intrusion detection‘, In IEEE Access, vol. 8, pp. 70245-70261. https://doi.org/10.1109/ACCESS.2020.2986882.
- Konatham, B. R. (2023). a Secure and Efficient Iiot Anomaly Detection Approach Using a Hybrid Deep Learning Technique.
- Kumari, P.; Jain, A.K. A comprehensive study of DDoS attacks over IoT network and their countermeasures. Comput. Secur. 2023, 127, 103096. [Google Scholar] [CrossRef]. https://doi.org/10.1016/j.cose.2023.103096.
- Lee, A., Wang, X., Nguyen, H., & Ra, I. (2018). A hybrid software defined networking architecture for next-generation IoTs. KSII Transactions on Internet and Information Systems, 12(2), 932–945. https://doi.org/10.3837/tiis.2018.02.024.
- Lei, T.; Xue, J.; Wang, Y.; Baker, T.; Niu, Z. An empirical study of problems and evaluation of IoT malware classification label sources. J. King Saud Univ.— Comput. Inf. Sci. 2024, 36, 101898. [Google Scholar] [CrossRef]. https://doi.org/10.1016/j.jksuci.2023.101898.
- Marion Olubunmi Adebiyi, Micheal Olaolu Arowolo, Goodnews Ime Archibong, Moses Damilola Mshelia, and Ayodele Ariyo Adebiyi. An sql injection detection model using chi-square with classification techniques. In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), pages 1–8. IEEE, 2021. https://doi.org/10.1109/ICECET52533.2021.9698771.
- Mayank Agarwal, Dileep Pasumarthi, Santosh Biswas, and Sukumar Nandi. Machine learning approach for detection of flooding dos attacks in 802.11 networks and attacker localization. International Journal of Machine Learning and Cybernetics, 7:1035–1051, 2016. https://doi.org/10.1007/s13042-014-0309-2.
- Mehmood, F., Ahmad, S., & Whangbo, T. K. (2023). An Efficient Optimization Technique for Training Deep Neural Networks. Mathematics, 11(6). https://doi.org/10.3390/math11061360.
- Mousa Al-Akhras, Mohammed Alawairdhi, Ali Alkoudari, and Samer Atawneh. Using machine learning to build a classification model for iot net-works to detect attack signatures. Int. J. Comput. Netw. Commun.(IJCNC), 12:99–116, 2020. https://doi.org/10.5121/ijcnc.2020.12607.
- Md Abdullah Al Ahasan, Mengjun Hu, and Nashid Shahriar. Ofmcdm/irf: A phishing website detection model based on optimized fuzzy multi-criteria decision-making and improved random forest. In 2023 Silicon Valley Cybersecurity Conference (SVCC), pages 1–8. IEEE, 2023. https://doi.org/10.1109/SVCC56964.2023.10165344.
- Ni, M. (2023). A review on machine learning methods for intrusion detection system. Applied and Computational Engineering, 27(1), 57–64. https://doi.org/10.54254/2755-2721/27/20230148.
- Pang, G., Shen, C., Cao, L., & Hengel, A. Van Den. (2021). Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys, 54(2), 1–36. https://doi.org/10.1145/3439950.
- Ramaswamy, S. L., & Chinnappan, J. (2022). RecogNet-LSTM+CNN: a hybrid network with attention mechanism for aspect categorization and sentiment classification. Journal of Intelligent Information Systems, 58(2), 379–404. https://doi.org/10.1007/s10844-021-00692-3.
- Sarumi, OA, Adetunmbi, AO & Adetoye, FA 2020, Discovering computer networks intrusion using data analytics and machine intelligence‘, Sci-entific African, vol. 9. https://doi.org/10.1016/j.sciaf.2020.e00500.
- Salih, A. A., Ameen, S. Y., Zeebaree, S. R. M., Sadeeq, M. A. M., Kak, S. F., Omar, N., Ibrahim, I. M., Yasin, H. M., Rashid, Z. N., & Ageed, Z. S. (2021). Deep Learning Approaches for Intrusion Detection. Asian Journal of Research in Computer Science, June, 50–64. https://doi.org/10.9734/ajrcos/2021/v9i430229.
- Sahoo, KS, Tripathy, BK, Naik, K, Ramasubbareddy, S, Balusamy, B, Khari, M & Burgos, D 2020, An evolutionary SVM model for DDOS attack detection in software defined networks‘, IEEE Access, vol. 8, pp. 132502-132513. https://doi.org/10.1109/ACCESS.2020.3009733.
- Sanket Agarkar and Soma Ghosh. Malware detection & classification using machine learning. In 2020 IEEE International Symposium on Sustaina-ble Energy, Signal Processing and Cyber Security (iSSSC), pages 1–6. IEEE, 2020. https://doi.org/10.1109/iSSSC50941.2020.9358835.
- Shahzad, F., Pasha, M., & Ahmad, A. (2017). A Survey of Active Attacks on Wireless Sensor Networks and their Countermeasures. 14(12), 54–65. http://arxiv.org/abs/1702.07136.
- Sura Abdulmunem Mohammed Al-Juboori, Firas Hazzaa, Zinah Sattar Jabbar, Sinan Salih, and Hassan Muwafaq Gheni. Man-in-the-middle and denial of service attacks detection using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 12(1):418– 426, 2023. https://doi.org/10.11591/eei.v12i1.4555.
- Tun, M. T., Nyaung, D. E., & Phyu, M. P. (2020). Network Anomaly Detection using Threshold-based Sparse Autoencoder. ACM International Conference Proceeding Series, May. https://doi.org/10.1145/3406601.3406626.
- Tuan, TA, Long, HV, Son, LH, Kumar, R, Priyadarshini, I & Son, NTK 2020, Performance evaluation of botnet DDoS attack detection using ma-chine learning‘, Evolutionary Intelligence, vol. 13, no. 2, pp. 283-294. https://doi.org/10.1007/s12065-019-00310-w.
- Waoo, A. A., & Soni, B. K. (2021). Performance Analysis of Sigmoid and Relu Activation Functions in Deep Neural Network. https://doi.org/10.1007/978-981-16-2248-9_5.
- Wu, Y., Wei, D., & Feng, J. (2020). Network attacks detection methods based on deep learning techniques: A survey. Security and Communication Networks, 2020. https://doi.org/10.1155/2020/8872923.
- Yang, W. (2021). Research on the Relationship between Computer Network and Economic Development in Information Environment. Journal of Physics: Conference Series, 1744(4). https://doi.org/10.1088/1742-6596/1744/4/042011.
- Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access, 5, 21954–21961. https://doi.org/10.1109/ACCESS.2017.2762418.
-
Downloads
-
How to Cite
Kaliyaperumal, D. K., Boddu, P. R. S. K. ., & Oruganti, P. S. K. . (2025). An analysis of alternative machine learning and deep learningalgorithms for categorization and detection of various active network assaults. International Journal of Basic and Applied Sciences, 14(1), 414-421. https://doi.org/10.14419/zywhgb37
