An analysis of alternative machine learning and deep learningalgorithms for categorization and detection of various active ‎network assaults

  • Authors

    • Dr. Karthikeyan Kaliyaperumal Post Doc Researcher, Lincoln University College, Malaysia
    • Prof. Raja Sarath Kumar Boddu Professor and Head of the Department of IT, School of Engineering, Malla Reddy University, Hyderabad, India
    • Prof. Sai Kiran Oruganti Faculty of Engineering and Built Science, Lincoln University College-KL Malaysia
    https://doi.org/10.14419/zywhgb37

    Received date: May 4, 2025

    Accepted date: May 23, 2025

    Published date: May 26, 2025

  • Cyber-Attacks; DDoS; IDS; Machine Learning; Intrusion Detection; Deep Learning; Network Attacks
  • Abstract

    Attacks on networks have grown increasingly widespread because of the exponential growth in internet traffic and the rapid progress of ‎network technology. A network attack occurs when a person gains illegal entry into a network. This includes any attempt to destroy the network, which might have disastrous consequences. Organizations depend significantly on tried-and-true network infrastructure security fea-‎tures like firewalls, encryption, and antivirus software. However, these strategies provide some defence against increasingly sophisti-‎cated attacks and viruses. Machine learning (ML) and deep learning (DL) are two important key concepts of artificial intelligence that gained ‎popularity around the turn of the century. The focus on statistical methodologies and data in these techniques may considerably improve ‎computing power by training computers to think like people. So, to address the inadequacies of non-intelligent solutions, computer ‎scientists started to use intelligent approaches in network security. This article provides a thorough examination of numerous deep learning ‎and machine learning methods for attack detection and classification.

  • References

    1. Abbas, S., Bouazzi, I., Ojo, S., Al Hejaili, A., Sampedro, G. A., Almadhor, A., & Gregus, M. (2024). Evaluating deep ‎learning variants for cyber-attacks detection and multi-class classification in IoT networks. PeerJ Computer ‎Science, 10, 1–23. https://doi.org/10.7717/peerj-cs.1793.
    2. Aftergood, S. (2017). The Cold War Online. Nature, 547, 30–31. https://www.nature.com/articles/547030a‎. https://doi.org/10.1038/547030a.
    3. Aguru, A.D.; Erukala, S.B. A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health ‎informatics systems using deep learning. Inf. Sci. 2024, 662, 120209. [Google Scholar] [CrossRef]‎ https://doi.org/10.1016/j.ins.2024.120209.
    4. Ahmad, I., Imran, M., Qayyum, A., Ramzan, M. S., & Alassafi, M. O. (2023). An Optimized Hybrid Deep Intrusion ‎Detection Model (HD-IDM) for Enhancing Network Security. Mathematics, 11(21). ‎ https://doi.org/10.3390/math11214501.
    5. Aldhaheri, A.; Alwahedi, F.; F.; Ferrag, M.A.; Battah, A. Deep learning for cyber threat detection in IoT networks: A ‎review. Internet Things Cyber-Phys. Syst. 2024, 4, 110–128. [Google Scholar] [CrossRef].‎ https://doi.org/10.1016/j.iotcps.2023.09.003.
    6. Al‐shehari, T., & Alsowail, R. A. (2021). An insider data leakage detection using one‐hot encoding, synthetic minority ‎oversampling and machine learning techniques. Entropy, 23(10). https://doi.org/10.3390/e23101258.
    7. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-‎Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, ‎future directions. In Journal of Big Data (Vol. 8, Issue 1). Springer International Publishing. ‎ https://doi.org/10.1186/s40537-021-00444-8.
    8. Anwer, M., Umer, M., Khan, S. M., & Waseemullah. (2021). Attack Detection in IoT using Machine Learning. ‎Engineering, Technology and Ap-plied Science Research, 11(3), 7273–7278. https://doi.org/10.48084/etasr.4202.‎
    9. Bai, Y. (2022). RELU-Function and Derived Function Review. SHS Web of Conferences, 144, 02006. ‎ https://doi.org/10.1051/shsconf/202214402006.
    10. Bonaparte, Y. (2024). Global Financial Stability Index. In SSRN Electronic Journal. ‎ https://doi.org/10.2139/ssrn.2753667.‎
    11. Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey. 1–50. ‎http://arxiv.org/abs/1901.03407‎.
    12. Chatterjee, A., & Ahmed, B. S. (2022). IoT anomaly detection methods and applications: A survey. Internet of Things ‎‎(Netherlands), 19(October 2021), 100568. https://doi.org/10.1016/j.iot.2022.100568.
    13. Churcher, A, Ullah, R, Ahmad, J, Ur Rehman, S, Masood, F, Gogate, M, Alqahtani, F, Nour, B & Buchanan, WJ ‎‎2021,An experimental analysis of attack classification using machine learning in IoT networks‘, Sensors, vol. 21, ‎no. 2, p. 446.‎ https://doi.org/10.3390/s21020446.
    14. Das, H. P., & Spanos, C. J. (2022). Improved dequantization and normalization methods for tabular data pre-‎processing in smart buildings. BuildSys 2022 - Proceedings of the 2022 9th ACM International Conference on ‎Systems for Energy-Efficient Buildings, Cities, and Transportation, 168–177. ‎ https://doi.org/10.1145/3563357.3564072.
    15. De Lucia, M., Maxwell, P. E., Bastian, N. D., Swami, A., Jalaian, B., & Leslie, N. (2021). Machine learning raw ‎network traffic detection. April, 24. https://doi.org/10.1117/12.2586114.‎
    16. G Ajeetha and G Madhu Priya. Machine learning based ddos attack detection. In 2019 Innovations in Power and ‎Advanced Computing Technolo-gies (i-PACT), volume 1, pages 1–5. IEEE, 2019. ‎ https://doi.org/10.1109/i-PACT44901.2019.8959961.
    17. Hsu, C. M., Hsieh, H. Y., Prakosa, S. W., Azhari, M. Z., & Leu, J. S. (2019). Using long-short-term memory based ‎convolutional neural networks for network intrusion detection. In Lecture Notes of the Institute for Computer ‎Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 264). Springer International ‎Publishing. https://doi.org/10.1007/978-3-030-06158-6_9.
    18. Ieracitano, C., Adeel, A., Morabito, F. C., & Hussain, A. (2020). A novel statistical analysis and autoencoder driven ‎intelligent intrusion detection approach. Neurocomputing, 387, 51–62. https://doi.org/10.1016/j.neucom.2019.11.016.
    19. Judith, A., Kathrine, G. J. W., Silas, S., & J, A. (2023). Efficient Deep Learning-Based Cyber-Attack Detection for ‎Internet of Medical Things De-vices †. Engineering Proceedings, 59(1). ‎ https://doi.org/10.3390/engproc2023059139.
    20. Kamyab, M., Liu, G., & Adjeisah, M. (2021). Attention-Based CNN and Bi-LSTM Model Based on TF-IDF and ‎GloVe Word Embedding for Sentiment Analysis. Applied Sciences (Switzerland), 11(23). ‎ https://doi.org/10.3390/app112311255.
    21. Kaur, B.; Dadkhah, S.; Shoeleh, F.; Neto, E.C.; Xiong, P.; Iqbal, S.; Lamontagne, P.; Ray, S.; Ghorbani, A.A. Internet ‎of Things (IoT) security da-taset evolution: Challenges and future directions. Internet Things 2023, 22, 100780. ‎‎[Google Scholar] [CrossRef]‎. https://doi.org/10.1016/j.iot.2023.100780.
    22. Kim, A, Park, M & Lee, DH 2020, AI-IDS: Application of deep learning to real-time web intrusion detection‘, In IEEE ‎Access, vol. 8, pp. 70245-70261.‎ https://doi.org/10.1109/ACCESS.2020.2986882.
    23. Konatham, B. R. (2023). a Secure and Efficient Iiot Anomaly Detection Approach Using a Hybrid Deep Learning ‎Technique.‎
    24. Kumari, P.; Jain, A.K. A comprehensive study of DDoS attacks over IoT network and their countermeasures. Comput. ‎Secur. 2023, 127, 103096. [Google Scholar] [CrossRef].‎ https://doi.org/10.1016/j.cose.2023.103096.
    25. Lee, A., Wang, X., Nguyen, H., & Ra, I. (2018). A hybrid software defined networking architecture for next-‎generation IoTs. KSII Transactions on Internet and Information Systems, 12(2), 932–945. ‎ https://doi.org/10.3837/tiis.2018.02.024.
    26. Lei, T.; Xue, J.; Wang, Y.; Baker, T.; Niu, Z. An empirical study of problems and evaluation of IoT malware ‎classification label sources. J. King Saud Univ.— Comput. Inf. Sci. 2024, 36, 101898. [Google Scholar] ‎‎[CrossRef]‎. https://doi.org/10.1016/j.jksuci.2023.101898.
    27. Marion Olubunmi Adebiyi, Micheal Olaolu Arowolo, Goodnews Ime Archibong, Moses Damilola Mshelia, and ‎Ayodele Ariyo Adebiyi. An sql injection detection model using chi-square with classification techniques. In ‎‎2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), pages 1–8. IEEE, ‎‎2021‎. https://doi.org/10.1109/ICECET52533.2021.9698771.
    28. Mayank Agarwal, Dileep Pasumarthi, Santosh Biswas, and Sukumar Nandi. Machine learning approach for detection ‎of flooding dos attacks in 802.11 networks and attacker localization. International Journal of Machine Learning ‎and Cybernetics, 7:1035–1051, 2016. ‎ https://doi.org/10.1007/s13042-014-0309-2.
    29. Mehmood, F., Ahmad, S., & Whangbo, T. K. (2023). An Efficient Optimization Technique for Training Deep Neural ‎Networks. Mathematics, 11(6). https://doi.org/10.3390/math11061360.
    30. Mousa Al-Akhras, Mohammed Alawairdhi, Ali Alkoudari, and Samer Atawneh. Using machine learning to build a ‎classification model for iot net-works to detect attack signatures. Int. J. Comput. Netw. Commun.(IJCNC), 12:99–‎‎116, 2020. ‎ https://doi.org/10.5121/ijcnc.2020.12607.
    31. Md Abdullah Al Ahasan, Mengjun Hu, and Nashid Shahriar. Ofmcdm/irf: A phishing website detection model based ‎on optimized fuzzy multi-criteria decision-making and improved random forest. In 2023 Silicon Valley ‎Cybersecurity Conference (SVCC), pages 1–8. IEEE, 2023. ‎ https://doi.org/10.1109/SVCC56964.2023.10165344.
    32. Ni, M. (2023). A review on machine learning methods for intrusion detection system. Applied and Computational ‎Engineering, 27(1), 57–64. https://doi.org/10.54254/2755-2721/27/20230148.
    33. ‎Pang, G., Shen, C., Cao, L., & Hengel, A. Van Den. (2021). Deep Learning for Anomaly Detection: A Review. ACM ‎Computing Surveys, 54(2), 1–36. https://doi.org/10.1145/3439950.
    34. Ramaswamy, S. L., & Chinnappan, J. (2022). RecogNet-LSTM+CNN: a hybrid network with attention mechanism for ‎aspect categorization and sentiment classification. Journal of Intelligent Information Systems, 58(2), 379–404. ‎ https://doi.org/10.1007/s10844-021-00692-3.
    35. Sarumi, OA, Adetunmbi, AO & Adetoye, FA 2020, Discovering computer networks intrusion using data analytics and ‎machine intelligence‘, Sci-entific African, vol. 9.‎ https://doi.org/10.1016/j.sciaf.2020.e00500.
    36. Salih, A. A., Ameen, S. Y., Zeebaree, S. R. M., Sadeeq, M. A. M., Kak, S. F., Omar, N., Ibrahim, I. M., Yasin, H. M., ‎Rashid, Z. N., & Ageed, Z. S. (2021). Deep Learning Approaches for Intrusion Detection. Asian Journal of ‎Research in Computer Science, June, 50–64. https://doi.org/10.9734/ajrcos/2021/v9i430229.
    37. Sahoo, KS, Tripathy, BK, Naik, K, Ramasubbareddy, S, Balusamy, B, Khari, M & Burgos, D 2020, An evolutionary ‎SVM model for DDOS attack detection in software defined networks‘, IEEE Access, vol. 8, pp. 132502-132513. https://doi.org/10.1109/ACCESS.2020.3009733.‎
    38. Sanket Agarkar and Soma Ghosh. Malware detection & classification using machine learning. In 2020 IEEE ‎International Symposium on Sustaina-ble Energy, Signal Processing and Cyber Security (iSSSC), pages 1–6. IEEE, ‎‎2020. ‎ https://doi.org/10.1109/iSSSC50941.2020.9358835.
    39. Shahzad, F., Pasha, M., & Ahmad, A. (2017). A Survey of Active Attacks on Wireless Sensor Networks and their ‎Countermeasures. 14(12), 54–65. http://arxiv.org/abs/1702.07136‎.
    40. Sura Abdulmunem Mohammed Al-Juboori, Firas Hazzaa, Zinah Sattar Jabbar, Sinan Salih, and Hassan Muwafaq ‎Gheni. Man-in-the-middle and denial of service attacks detection using machine learning algorithms. Bulletin of ‎Electrical Engineering and Informatics, 12(1):418– 426, 2023.‎ https://doi.org/10.11591/eei.v12i1.4555.
    41. ‎ Tun, M. T., Nyaung, D. E., & Phyu, M. P. (2020). Network Anomaly Detection using Threshold-based Sparse ‎Autoencoder. ACM International Conference Proceeding Series, May. https://doi.org/10.1145/3406601.3406626.‎
    42. Tuan, TA, Long, HV, Son, LH, Kumar, R, Priyadarshini, I & Son, NTK 2020, Performance evaluation of botnet DDoS ‎attack detection using ma-chine learning‘, Evolutionary Intelligence, vol. 13, no. 2, pp. 283-294.‎ https://doi.org/10.1007/s12065-019-00310-w.
    43. Waoo, A. A., & Soni, B. K. (2021). Performance Analysis of Sigmoid and Relu Activation Functions in Deep Neural ‎Network. https://doi.org/10.1007/978-981-16-2248-9_5.
    44. Wu, Y., Wei, D., & Feng, J. (2020). Network attacks detection methods based on deep learning techniques: A survey. ‎Security and Communication Networks, 2020. https://doi.org/10.1155/2020/8872923.
    45. Yang, W. (2021). Research on the Relationship between Computer Network and Economic Development in ‎Information Environment. Journal of Physics: Conference Series, 1744(4). https://doi.org/10.1088/1742-6596/1744/4/042011.‎
    46. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural ‎Networks. IEEE Access, 5, 21954–21961. https://doi.org/10.1109/ACCESS.2017.2762418.
  • Downloads

  • How to Cite

    Kaliyaperumal, D. K., Boddu, P. R. S. K. ., & Oruganti, P. S. K. . (2025). An analysis of alternative machine learning and deep learningalgorithms for categorization and detection of various active ‎network assaults. International Journal of Basic and Applied Sciences, 14(1), 414-421. https://doi.org/10.14419/zywhgb37