Deep Learning-Based Lung Cancer Classification Using TNMCoding: Insights for Pharmacological Interventions
-
https://doi.org/10.14419/cvj7bm55
Received date: April 25, 2025
Accepted date: July 8, 2025
Published date: December 4, 2025
-
Cancer Stage Prediction; CT Lung Scans; Lung Cancer Classification; Multilevel Deep Learning; Tumor Node Metastasis (TNM) Staging; Pharmacological Interventions -
Abstract
A multilevel deep learning approach known as TNM coding is commonly employed to classify lung cancer and predict disease stages. This method integrates multiple deep learning networks to address complex challenges effectively. The objective of this study is to categorize CT lung scans into three Tumor-Node-Metastasis (TNM) staging classes in accordance with the American Joint Committee on Cancer's (AJCC) guidelines and to explore how accurate classification can support targeted pharmacological interventions. Initially, different lung diseases , such as juxtapleural and internal nodules, are segmented automatically using an optimized conditional generative adversarial network (c-GAN). Following that, a combination of support vector machine classifiers and deep learning models is used to categorize tumors, nodes, and metastases based on the AJCC staging criteria. This automated TNM cataloging method provides accurate cancer staging without requiring manual detection of the region of interest (ROI) within CT scans. The proposed approach enhances the precision and cost-cost-effectiveness of CT scan analysis for lung cancer classification, thereby facilitating more tailored and effective pharmacological treatments.
-
References
- Pawar SP, Talbar SN. Multi-level deep learning based lung cancer classifier for classification based on the tumour-node-metastasis approach. Int J Imaging Syst Technol. 2023; 33(3): 881-894. https://doi.org/10.1002/ima.22835.
- Ismaeel, H. K., & Abdulazeez, A. M. (2024). Lung cancer detection and classification based on deep learning: a review. Jurnal Teknoinfo, 18(2), 458. https://doi.org/10.33365/jti.v18i2.4309.
- Hueman, M. T., Wang, H., Liu, Z., Henson, D. E., Nguyen, C., Park, D., Sheng, L., & Chen, D. (2021). Expanding TNM for lung cancer through machine learning. Thoracic Cancer, 12(9), 1423–1430. https://doi.org/10.1111/1759-7714.13926.
- Sirisha, J. (2024). Lung cancer prediction through deep learning. Indian Scientific Journal of Research in Engineering and Management. https://doi.org/10.55041/IJSREM29970.
- Ilani, M. A., Kavei, A., & Tehran, S. M. (2024). Advancing Lung Cancer Classification through Machine Learning: A Comprehensive Comparative Analysis of Model Performance. https://doi.org/10.20944/preprints202406.0300.v1.
- A. Iyer, H. Vyshnavi A M, and K. Namboori P K, "Deep Convolution Network Based Prediction Model for Medical Diagnosis of Lung Cancer - A Deep Pharmacogenomic Approach : deep diagnosis for lung cancer," 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bangalore, India, 2018, pp. 1-4, https://doi.org/10.1109/ICAECC.2018.8479499.
- Wang, X., Sharpnack, J., & Lee, T. C. M. (2024). Improving Lung Cancer Diagnosis and Survival Prediction with Deep Learning and CT Imaging. https://doi.org/10.1371/journal.pone.0323174.
- Middleton, G., Middleton, G., Fletcher, P., Popat, S., Savage, J., Summers, Y., Greystoke, A., Gilligan, D., Cave, J., O’Rourke, N., Brewster, A., Toy, E., Spicer, J., Jain, P., Dangoor, A., Mackean, M., Forster, M., Farley, A., Wherton, D., … Billingham, L. (2020). The National Lung Matrix Trial of personalized therapy in lung cancer. Nature, 583(7818), 807–812. https://doi.org/10.1038/s41586-020-2481-8.
- Nusantoro, J., Soesanti, I., & Ardiyanto, I. (2024). Lung Cancer Detection Algorithm and Method Using Deep Learning Techniques: A Systematic Literature Review. 75–80. https://doi.org/10.1109/ICE3IS62977.2024.10775504.
- Javed, R., Abbas, T., Khan, A.H. et al. Deep learning for lungs cancer detection: a review. Artif Intell Rev 57, 197 (2024). https://doi.org/10.1007/s10462-024-10807-1.
- Chandrasekar, T., Karunanithi, P. K., Jenifer, A. E., & Dhiraj, I. (2024). TPLSTM‐Based Deep ANN with Feature Matching Prediction of Lung Cancer. 317–328. https://doi.org/10.1002/9781394175376.ch18.
- Gayap, H. T., & Akhloufi, M. A. (2024). Deep Machine Learning for Medical Diagnosis, Application to Lung Cancer Detection: A Re-view. BioMedInformatics, 4(1), 236-284. https://doi.org/10.3390/biomedinformatics4010015.
- Jagadeesh K, Rajendran A. Lung Tumor Staging and Classification with Machine Learning and Deep Learning Models, 07 March 2024, PRE-PRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3940572/v1.
- Acharya, B.S., Ramasubramanian, K. (2022). Comparative Analysis of Advanced Machine Learning Based Techniques to Identify the Lung Can-cer: A Review. In: Kumar, A., Fister Jr., I., Gupta, P.K., Debayle, J., Zhang, Z.J., Usman, M. (eds) Artificial Intelligence and Data Science. ICAIDS 2021. Communications in Computer and Information Science, vol 1673. Springer, Cham. https://doi.org/10.1007/978-3-031-21385-4_1.
- Davri, A., Birbas, E., Kanavos, T., Ntritsos, G., Giannakeas, N., Tzallas, A. T., & Batistatou, A. (2023). Deep Learning for Lung Cancer Diagnosis, Prognosis and Prediction Using Histological and Cytological Images: A Systematic Review. Cancers, 15. https://doi.org/10.3390/cancers15153981.
- T. M. Kulkarni and A. O. Mulani. Deep Learning Based FaceMask Detection: An Approach to Reduce Pandemic Spreads. African Journal of Bio-logical Sciences (South Africa). 2024; 6(6), 783-795.
- Birajadar Ganesh Basawaraj et al. Epilepsy Identification using Hybrid CoPrO-DCNN Classifier. International Journal of Computing and Digital Systems. 2024; 16(1): 783-796. https://doi.org/10.12785/ijcds/160157.
- Kolhe V. A. et al. Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for lam-inar flow region. Ships and Offshore Structures, 2024; 1-10: 1974-1983. https://doi.org/10.1080/17445302.2024.2317651.
- Mulani A. O., Birajadar G., Ivković, N., Salah B., & Darlis A. R. Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 2023; 40(6): 2819-2825. https://doi.org/10.18280/ts.400642.
- Mane P. B. & Mulani A. O. High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 2019; 8(4): 519-523.
- Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187. https://doi.org/10.11591/eei.v6i2.651.
- Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Con-ference on Communication and Signal Processing (pp. 1895-1899). IEEE. https://doi.org/10.1109/ICCSP.2014.6950174.
- Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE. https://doi.org/10.1109/ICECDS.2017.8390088.
- Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning ap-proach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2350-0_5.
- Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6. https://doi.org/10.17485/ijst/2016/v9i39/101888.
- Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-1540-3_20.
- Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non‐invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable plat-form. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algo-rithms for Signal and Image Processing, 219-229. https://doi.org/10.1002/9781119861850.ch12.
- Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45. https://doi.org/10.1177/0976500X241281490.
- Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, Altaf Osman Mulani, (2025), Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science, Volume I. https://doi.org/10.1007/978-3-031-88762-8.
- Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, Altaf Osman Mulani, (2025), Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science, Volume II. https://doi.org/10.1007/978-3-031-88762-8.
- Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Ro-driguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8_3.
- Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Pro-cessing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8_18.
-
Downloads
-
How to Cite
Chaudhari, M. . ., Dhake , T. P. ., Mahajan , K. ., Chopade , D. P. ., Gawande , P. ., Rana , M. ., & Mulani , A. O. . (2025). Deep Learning-Based Lung Cancer Classification Using TNMCoding: Insights for Pharmacological Interventions. International Journal of Basic and Applied Sciences, 14(8), 63-70. https://doi.org/10.14419/cvj7bm55
