A Novel Genetic Algorithm-Based Decisive Approach for Detection of Influencing Node in Terrorist ‎Network (An Anti-Terrorism Approach)‎

  • Authors

    • Saurabh Singh Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Madhuri Gokhale Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Om Prakash Chauhan Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Dr. Kanchan Cecil Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Dr. S. K. Mahobiya Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Namarta Sahayam Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Khushi Koshta Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Abhay Bairagi Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • D. M. Balaji Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Preshit Tiwari Jabalpur Engineering College, Jabalpur, Madhya Pradesh, 482001, India
    • Dr. Mahesh Motwani Rajiv Gandhi Prodhyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, 462033 India
    • Dr. Anu Sayal School of Accounting and Finance, Taylor's University. Subang Jaya, 47500, MALAYSIA
    https://doi.org/10.14419/xgbrcc61

    Received date: April 16, 2025

    Accepted date: June 10, 2025

    Published date: June 18, 2025

  • Betweenness Centrality Measure (BT); Closeness Centrality (CL); Degree Centrality (D); Page Rank Measure (PR); Terrorist Network (Tn)‎.
  • Abstract

    In response to the destructiveness caused by terrorists, a framework for pinpointing pivotal nodes within their networks is necessary. This ‎study introduces a Genetic Algorithm-based framework, progressing through three phases to identify crucial nodes. The first phase filters ‎the network, the second employs the robust Genetic Algorithm to pinpoint critical nodes, and the third phase optimises for enhanced ‎accuracy. Empirical results demonstrate the framework's improvement over conventional centrality-based methods, showing enhancements ‎in concurrence, accuracy, and authenticity. The framework proposes a strategic shift toward focusing on the leaders of terrorist networks. ‎This strategic recalibration optimises law enforcement efforts, streamlining their interventions for maximum impact. The inherent potential of ‎this approach resonates in its capacity to significantly enhance the efficiency of security agencies. By concentrating resources on the nodes ‎that truly matter, a more targeted and impactful counter-terrorism strategy can be forged. This innovative framework thus holds the promise ‎of not only more effective counter-terrorism strategies but also a more adept response to the persistent challenges posed by terrorism‎.

  • References

    1. Alzahrani, T., & Horadam, K. J. (2014). Analysis of two crime-related networks derived from bipartite social networks. ‎‎2014 IEEE/ACM Interna-tional Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 890–‎‎897. https://doi.org/10.1109/ASONAM.2014.6921691.
    2. Dawoud, K., Alhajj, R., & Rokne, J. (2010). A Global Measure for Estimating the Degree of Organization of Terrorist ‎Networks. 2010 Internation-al Conference on Advances in Social Networks Analysis and Mining, 421–427. https://doi.org/10.1109/ASONAM.2010.84.
    3. Wiil, U. K., Gniadek, J., & Memon, N. (2010). Measuring Link Importance in Terrorist Networks. 2010 International ‎Conference on Advances in Social Networks Analysis and Mining, 225–232. https://doi.org/10.1109/ASONAM.2010.29.
    4. Kaati, L., Omer, E., Prucha, N., & Shrestha, A. (2015). Detecting Multipliers of Jihadism on Twitter. 2015 IEEE ‎International Conference on Data Mining Workshop (ICDMW), 954–960. https://doi.org/10.1109/ICDMW.2015.9.
    5. Singh, S., Verma, S. K., & Tiwari, A. (2020). A novel approach for finding crucial node using ELECTRE method. ‎International Journal of Modern Physics B, 34(09), 2050076. https://doi.org/10.1142/S0217979220500769.
    6. Duo-Yong, S., Shu-Quan, G., Hai, Z., & Ben-Xian, L. (2011). Study on covert networks of terroristic organizations based ‎on text analysis. Pro-ceedings of 2011 IEEE International Conference on Intelligence and Security Informatics, 373–378. ‎ https://doi.org/10.1109/ISI.2011.5984117.‎
    7. Maheshwari, S., & Tiwari, A. (2015). A Novel Genetic Based Framework for the Detection and Destabilization of ‎Influencing Nodes in Terrorist Network. In L. C. Jain, H. S. Behera, J. K. Mandal, & D. P. Mohapatra (Eds.), ‎Computational Intelligence in Data Mining—Volume 1 (Vol. 31, pp. 573–582). Springer India. https://doi.org/10.1007/978-81-322-2205-7_53.
    8. Petersen, R. R., Rhodes, C. J., & Wiil, U. K. (2011). Node Removal in Criminal Networks. 2011 European Intelligence and ‎Security Informatics Conference, 360–365. https://doi.org/10.1109/EISIC.2011.57.
    9. Ranjan, P., & Vaish, A. (2014). Apriori Viterbi Model for Prior Detection of Socio-Technical Attacks in a Social Network. ‎‎2014 International Con-ference on Engineering and Telecommunication, 97–101. https://doi.org/10.1109/EnT.2014.11.‎
    10. Sachan, A. (2012). Countering terrorism through dark web analysis. 2012 Third International Conference on Computing, ‎Communication and Net-working Technologies (ICCCNT’12), 1–5. https://doi.org/10.1109/ICCCNT.2012.6396055.
    11. Sakharova, I. (2011). Al Qaeda terrorist financing and technologies to track the finance network. Proceedings of 2011 IEEE ‎International Confer-ence on Intelligence and Security Informatics, 20–25. https://doi.org/10.1109/ISI.2011.5984044.
    12. Spezzano, F., Subrahmanian, V. S., & Mannes, A. (2013). STONE: Shaping terrorist organizational network efficiency. ‎Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 348–‎‎355. https://doi.org/10.1145/2492517.2492626.
    13. Xuning Tang, & Yang, C. C. (2010). Generalizing terrorist social networks with K-nearest neighbor and edge betweeness ‎for social network inte-gration and privacy preservation. 2010 IEEE International Conference on Intelligence and Security ‎Informatics, 49–54. https://doi.org/10.1109/ISI.2010.5484776.
    14. Collins, B., Hoang, D. T., Nguyen, N. T., & Hwang, D. (2022). A New Model for Predicting and Dismantling a Complex ‎Terrorist Network. IEEE Access, 10, 126466–126478. https://doi.org/10.1109/ACCESS.2022.3224603.
    15. Shafi, I., Din, S., Hussain, Z., Ashraf, I., & Choi, G. S. (2021). Adaptable Reduced ‎Complexity ‎Approach ‎Based on State Vector Machine for Identification of ‎Criminal Activists on Social ‎Media. IEEE Access, 9, ‎‎95456–95468. ‎https://doi.org/10.1109/ACCESS.2021.3094532.‎
    16. Singh, S., Indurkhya, D., & Tiwari, A. (2018). An avant-garde approach for detection of ‎key ‎individuals with ‎leader hierarchy determination using FIMAX Model (Anti—‎Terrorism ‎approach). 2018 International ‎Conference on Information ‎Management and Processing ‎‎(ICIMP),89–99. ‎ https://doi.org/10.1109/ICIMP1.2018.8325847.
    17. Li, G., Hu, J., Song, Y., Yang, Y., & Li, H.-J. (2019). Analysis of the Terrorist ‎Organization ‎Alliance ‎Network Based on Complex Network Theory. IEEE Access, 7, ‎‎103854–103862. https://doi.org/10.1109/ACCESS.2019.2929798.
    18. Singh, saurabh kumar. (2024). 26/11 Mumbai Terror Network Communication Dataset ‎‎(Version 1.0) [Dataset]. ‎Zenodo. ‎
    19. Li, Z., Sun, D., Guo, S., & Li, B. (2014). Detecting key individuals in terrorist network ‎based on FANP model. 2014 ‎IEEE/ACM International Conference on Advances in ‎Social Networks Analysis and Mining (ASONAM 2014), ‎‎724–727. ‎ https://doi.org/10.1109/ASONAM.2014.6921666.
    20. Report on “Mumbai Terrorist Attacks (Nov.26-29, 2008)” https://zenodo.org/records/14887023‎.
    21. Singh, Saurabh, Shashikant Verma, and Akhilesh Tiwari. "Identification of Pivotal node ‎ in Terrorist Network using ‎TOPSIS Method."(14)‎ Avaliable Online.
    22. Landherr, Andrea, Bettina Friedl, and Julia Heidemann. "A critical review of centrality measures in social networks." ‎Business & Information Sys-tems Engineering 2 (2010): 371-385. (21) https://doi.org/10.1007/s12599-010-0127-3.
    23. Berzinji, Ala, Lisa Kaati, and Ahmed Rezine. "Detecting key players in terrorist networks." In 2012 European Intelligence ‎and Security Informatics Conference, pp. 297-302. IEEE, 2012.(15) ‎https://ieeexplore.ieee.org/abstract/document/6298852‎. https://doi.org/10.1109/EISIC.2012.13.
    24. Campedelli, Gian Maria, Iain Cruickshank, and Kathleen M Carley. "A complex networks approach to find latent clusters ‎of terrorist groups." Ap-plied Network Science 4, no. 1 (2019): 1-22. (16) https://doi.org/10.1007/s41109-019-0184-6.
    25. Yusof, Norazah, and Azizah Abdul Rahman. "Students' interactions in online asynchronous discussion forum: A Social ‎Network Analysis." In 2009 International Conference on Education Technology and Computer, pp. 25-29. IEEE, ‎‎2009.(17) https://ieeexplore.ieee.org/abstract/document/5169446‎. https://doi.org/10.1109/ICETC.2009.48.
    26. Jiang D, Wu J, Ding F, Ide T, Scheffran J, Helman D, Zhang S, Qian Y, Fu J, Chen S, Xie X, Ma T, Hao M, Ge Q. An ‎integrated deep-learning and multi-level framework for understanding the behavior of terrorist groups. Heliyon. 2023 Aug ‎‎6;9(8):e18895. PMID: 37636372; PMCID: PMC10457427.‎ https://doi.org/10.1016/j.heliyon.2023.e18895.
    27. Anwar, R., Hussain, I., & Chen, Z. (2022). A hybrid deep learning-based framework for predicting future terrorist ‎activities. Egyptian Informatics Journal, 23(3), 437–446. https://doi.org/10.1016/j.eij.2022.04.001.
  • Downloads

  • How to Cite

    Singh , S. ., Gokhale , M. ., Chauhan , O. P. ., Cecil, D. K. . ., Mahobiya , D. S. K. ., Sahayam , N. ., Koshta , K. ., Bairagi , A. ., Balaji , D. M. ., Tiwari , P. ., Motwani , D. M. ., & Sayal , D. A. . (2025). A Novel Genetic Algorithm-Based Decisive Approach for Detection of Influencing Node in Terrorist ‎Network (An Anti-Terrorism Approach)‎. International Journal of Basic and Applied Sciences, 14(2), 247-259. https://doi.org/10.14419/xgbrcc61