Antioxidant efficacy of synthesized composite copper lutein nano nutraceuticals ‎from brassica oleracea var italica

  • Authors

    • Saif Saadee Nawaf Department of Biotechnology, Mangalore University, Mangalagangothri, Mangalore
    • Sudhakar Malla Department of Microbiology, Mangalore University, Jnana Kaveri, Chikka Aluvara, Kodagu
    • Manjula Ishwara Kalyani Insearch Biotech laboratory, Bangalore
    https://doi.org/10.14419/fwg9s764

    Received date: April 15, 2025

    Accepted date: May 21, 2025

    Published date: May 26, 2025

  • Copper Nanoparticles; Broccoli; FTIR; Antioxiants; Lutein; DPPH; Ferrozine Assay; RP ‎Method
  • Abstract

    Aim: Due to its antioxidant properties, lutein scavenges reactive oxygen species, including lipid ‎peroxy radicals and singlet oxygen. Despite the therapeutic promise derived from its various ‎physiological functions, lutein's absorption and stability issues make efficient distribution ‎challenging. Nanotechnology applications in pharmaceuticals have been the subject in recent decades. Similar to nanopharmaceuticals, a new class of nanomaterials known ‎as nanonutraceuticals has evolved due to the application of nanotechnology for improved ‎nutraceutical delivery.‎

    Methods: For green synthesis, B. oleracea stalks and florets were utilized individually in a ‎copper sulphate solution. The synthesized Copper nanoparticles were characterized and screened ‎for their antibacterial and anti-biofilm activities. ‎

    Results: At 400μg/ml concentrations, FLNP and FNP demonstrated 92 and 88% DPPH free ‎radical scavenging, respectively. Comparing the different NPs to the positive control, FLNP ‎demonstrated the highest H2O2 scavenging activity (IC50 72.55μg/ml), followed by FNP. ‎When compared to the positive control, FLNP, FNP, and Lutein demonstrated antioxidant ‎capacities of 94, 91, and 87% at 400µg/ml using the reducing power method. According to our ‎ferrozine assay results, FLNP demonstrated an efficient ability to bind iron, suggesting that this ‎property may be linked to its antioxidant properties. According to their different antioxidant ‎capacities, FLNP and FNP demonstrated 92 and 88% FZ reduction ability. ‎

    Conclusion: The present study was successful in synthesizing composite lutein-based copper ‎nanoparticles and also confirmed of the potential antioxidant activity exhibited by the ‎composite particles. The composite particles did exhibit enhanced antioxidant activity when ‎compared to other controls‎.

  • References

    1. Adela, Mora-Gutierrez & Marquez, Sixto & Attaie, Rahmat & Nunez de Gonzalez, Maryuri & Jung, Yoonsung & Woldesenbet, Selamawit & Moussavi, Mahta. (2022). Mixed Biopolymer Systems Based on Bovine and Caprine Caseins, Yeast β-Glucan, and Maltodextrin for Microencapsu-lating Lutein Dispersed in Emulsified Lipid Carriers. Polymers. 14. 2600. https://doi.org/10.3390/polym14132600.
    2. Ahn YJ, Kim H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants (Basel). 2021 Sep 13;10(9):1448. doi: 10.3390/antiox10091448. PMID: 34573081; PMCID: PMC8470349. https://doi.org/10.3390/antiox10091448.
    3. Algan, A. H., Gungor-Ak, A., & Karatas, A. (2022). Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspec-tive. Pharmaceutics, 14(9), 1852. https://doi.org/10.3390/pharmaceutics14091852.
    4. Arunkumar R., Gorusupudi A., Bernstein P.S. The macular carotenoids: A biochemical overview. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020; 1865:158617. https://doi.org/10.1016/j.bbalip.2020.158617.
    5. Bhattacharyya S, Datta S, Mallick B, Dhar P and Ghosh S 2010 J. Agric. Food Chem. 58, 8259- 64. https://doi.org/10.1021/jf101262e.
    6. Bhattacharyya S, Datta S, Mallick B, Dhar P, Ghosh S. Lutein content and in vitro antioxidant activity of different cultivars of Indian marigold flower (Tagetes patula L.) extracts. J Agric Food Chem. 2010 Jul 28;58(14):8259-64. https://doi.org/10.1021/jf101262e.
    7. Bhatti, M.Z., Ali, A., Ahmad, A. et al. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Res Notes 8, 279 (2015). https://doi.org/10.1186/s13104-015-1228-3.
    8. Blazquez S, Olmos E, Hernandez JA, Fernandez-Garcıa N, Fernandez JA, Piqueras A (2009) Somatic embryogenesis in saffron (Crocus sativus L.) Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tiss Organ Cult 97:49–57 https://doi.org/10.1007/s11240-009-9497-y.
    9. Boligon AA, Pereira RP, Feltrin AC, Machado MM, Janovik V, Rocha JBT et al (2009) Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour Technol 100:6592–6598 https://doi.org/10.1016/j.biortech.2009.03.091.
    10. Bolla PK, Gote V, Singh M, Patel M, Clark BA, Renukuntla J. Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells. Pharmaceutics. 2020 Aug 24;12(9):798. https://doi.org/10.3390/pharmaceutics12090798.
    11. Brownie S. (2006). Why are elderly individuals at risk of nutritional deficiency? 12 110–118. https://doi.org/10.1111/j.1440-172X.2006.00557.x.
    12. Burgos G, Muñoa L, Sosa P, Bonierbale M, zum Felde T and Díaz C 2013 In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes Plant Foods for Human Nutrition 68 385–390. https://doi.org/10.1007/s11130-013-0381-x.
    13. Chung H. Y., Cesari M., Anton S., Marzetti E., Giovannini S., Seo A. Y., et al. (2009). Molecular inflammation: underpinnings of aging and age-related diseases. 8 18–30. https://doi.org/10.1016/j.arr.2008.07.002.
    14. Eliassen, A.H.; Hendrickson, S.J.; Brinton, L.A.; Buring, J.E.; Campos, H.; Dai, Q.; Dorgan, J.F.; Franke, A.A.; Gao, Y.T.; Goodman, M.T.; et al. Circulating carotenoids and risk of breast cancer: Pooled analysis of eight prospective studies. J. Natl. Cancer Inst. 2012, 104, 1905–1916. https://doi.org/10.1093/jnci/djs461.
    15. Eliassen, A.H.; Liao, X.; Rosner, B.; Tamimi, R.M.; Tworoger, S.S.; Hankinson, S.E. Plasma carotenoids and risk of breast cancer over 20 y of fol-low-up. Am. J. Clin. Nutr. 2015, 101, 1197–1205. https://doi.org/10.3945/ajcn.114.105080.
    16. Gonçalves C, Ramalho MJ, Silva R, Silva V, Marques-Oliveira R, Silva AC, Pereira MC, Loureiro JA. Lipid Nanoparticles Containing Mixtures of Antioxidants to Improve Skin Care and Cancer Prevention. Pharmaceutics. 2021 Nov 30;13(12):2042. https://doi.org/10.3390/pharmaceutics13122042.
    17. Ingkasupart P, Manochai B, Song W T and Hong J H 2015 Food Sci. Technol. 35 380-5. https://doi.org/10.1590/1678-457X.6663.
    18. J. Huang, F. Bai, Y. Wu, Q. Ye, D. Liang, C. Shi, X. Zhang, Development and evaluation of lutein-loaded alginate microspheres with improved stability and antioxidant, Journal of the Science of Food and Agriculture. 99 (2019) 5195–5201, https://doi.org/10.1002/jsfa.9766.
    19. Jiang Yi, Yuting Fan, Wallace Yokoyama, Yuzhu Zhang, Liqing Zhao, Characterization of milk proteins–lutein complexes and the impact on lutein chemical stability, Food Chemistry, Volume 200, 2016, Pages 91-97. https://doi.org/10.1016/j.foodchem.2016.01.035.
    20. Kandola K., Bowman A., Birch-Machin M. A. (2015). Oxidative stress–a key emerging impact factor in health, ageing, lifestyle and aesthetics. 37(Suppl. 2) 1–8. https://doi.org/10.1111/ics.12287.
    21. Kang J. H., Ascherio A., Grodstein F. (2005). Fruit and vegetable consumption and cognitive decline in aging women. 57 713–720. https://doi.org/10.1002/ana.20476.
    22. Kavalappa, Y.P.; Gopal, S.S.; Ponesakki, G. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and in-duces apoptosis. J. Cell Physiol. 2020, 236, 1798–1809. https://doi.org/10.1002/jcp.29961.
    23. Kim, J.H.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kwon, O.; Kim, H.; Kim, J. Dietary carotenoids intake and the risk of gastric cancer: A Case Control study in Korea. Nutrients 2018, 10, 1031. https://doi.org/10.3390/nu10081031.
    24. Kregel K. C., Zhang H. J. (2007). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considera-tions. 292 R18–R36. https://doi.org/10.1152/ajpregu.00327.2006.
    25. Kubavat, K., Trivedi, P., Ansari, H. et al. green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. Beni-Suef Univ J Basic Appl Sci 11, 115 (2022). https://doi.org/10.1186/s43088-022-00297-x.
    26. Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640 https://doi.org/10.1016/j.foodchem.2003.07.024.
    27. Lafarga, T.; Bobo, G.; Viñas, I.; Collazo, C.; Aguiló-Aguayo, I. Effects of thermal and non-thermal processing of cruciferous vegetables on glucos-inolates and its derived forms. J. Food Sci. Technol. 2018, 5, 1973–1981. https://doi.org/10.1007/s13197-018-3153-7.
    28. Lei Fang, Hua Lin, Zhenfeng Wu, Zhen Wang, Xinxin Fan, Ziting Cheng, Xiaoya Hou, Daquan Chen, In vitro/vivo evaluation of novel mitochon-drial targeting charge-reversal polysaccharide-based antitumor nanoparticle, Carbohydrate Polymers, Volume 234, 2020, 115930 https://doi.org/10.1016/j.carbpol.2020.115930.
    29. Manzoor, Shaziya & Rashid, Rubiya & Panda, Bibhu & Sharma, Vasudha & Azhar, Mohd. (2022). Green extraction of Lutein from Marigold flower petals, process optimization and its potential to improve the oxidative stability of sunflower oil. Ultrasonics Sonochemistry. 85. https://doi.org/10.1016/j.ultsonch.2022.105994.
    30. Monero, D. A., Perez-Balibrea, S., Ferreres, F. et al. (2010) Acylated anthocyanins in broccoli sprouts, Food Chemistry, 123 (2), 358–363. https://doi.org/10.1016/j.foodchem.2010.04.044.
    31. Muller O., Krawinkel M. (2005). Malnutrition and health in developing countries. 173 279–286. https://doi.org/10.1503/cmaj.050342.
    32. N.M. Sachindra, N.S. Mahendrakar, Process optimization for extraction of carotenoids from shrimp waste with vegetable oils, Bioresource Tech-nology. 96 (2005) 1195–1200, https://doi.org/10.1016/j.biortech.2004.09.018.
    33. Nagata C., Nakamura K., Wada K., Oba S., Hayashi M., Takeda N., et al. (2010). Association of dietary fat, vegetables and antioxidant micronu-trients with skin ageing in Japanese women. 103 1493–1498. https://doi.org/10.1017/S0007114509993461.
    34. Prieto P, Pineda M, Aguliar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–34 https://doi.org/10.1006/abio.1999.4019.
    35. Rogers N. M., Seeger F., Garcin E. D., Roberts D. D., Isenberg J. S. (2014). Regulation of soluble guanylate cyclase by matricellular thrombos-pondins: implications for blood flow. 5:134. https://doi.org/10.3389/fphys.2014.00134.
    36. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008 https://doi.org/10.1093/carcin/10.6.1003.
    37. Shah SMM, Sadiq A, Shah SMH, Ullah F (2014) Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum meth-anolic extract in different animal models. BMC Complement Altern Med. 14:181 https://doi.org/10.1186/1472-6882-14-181.
    38. Sikder MAA, Rahman MA, Islam MR, Abul KM, Kiasar MA, Rahman MS et al (2010) In-vitro antioxidant, reducing power, free radical scaveng-ing and membrane stabilizing activities of Spilanthes calva. Bangladesh Pharmaceut J. 13:63–67
    39. Sreelekha, E., George, B., Shyam, A., Sajina, N., and Mathew, B. (2021). A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. Bionanoscience 11, 489–496. https://doi.org/10.1007/s12668-021-00824-7.
    40. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival Antioxid Redox Signal. 2008; 10:1343–74 https://doi.org/10.1089/ars.2007.1957.
    41. Trifunovic A., Wredenberg A., Falkenberg M., Spelbrink J. N., Rovio A. T., Bruder C. E., et al. (2004). Premature ageing in mice expressing defec-tive mitochondrial DNA polymerase. 429 417–423. https://doi.org/10.1038/nature02517.
    42. Valko M, Rhodes CJ, Moncol J, Izakovik M, Mazure M. Free radicals, metals and antioxidants in oxidative stress-induced cancer Chem Biol Inter-act. 2006; 160:1–40 https://doi.org/10.1016/j.cbi.2005.12.009.
    43. Vinardell, M. P., & Mitjans, M. (2015). Nanocarriers for Delivery of Antioxidants on the Skin. Cosmetics, 2(4), 342-354. https://doi.org/10.3390/cosmetics2040342 https://doi.org/10.3390/cosmetics2040342.
    44. Westphal, A.; Riedl, K.M.; Cooperstone, J.L.; Kamat, S.; Balasubramaniam, V.M.; Schwartz, S.J.; Böhm, V. High-pressure processing of broccoli sprouts: Influence on bioactivation of glucosinolates to isothiocyanates. J. Agric. Food. Chem. 2017, 65, 8578–8585. https://doi.org/10.1021/acs.jafc.7b01380.
    45. Weydert C.J., Cullen J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010; 5: 51–66. https://doi.org/10.1038/nprot.2009.197.
    46. Wong K.-H., Nam H.-Y., Lew S.-Y., Naidu M., David P., Kamalden T.A., Hadie S.N.H., Lim L.-W. Discovering the Potential of Natural Antioxi-dants in Age-Related Macular Degeneration: A Review. Pharmaceuticals. 2022; 15: 101. https://doi.org/10.3390/ph15010101.
    47. Zhang, D. and Hamauzu, Y. (2004) Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking, Food Chemistry, 88 (4), 503–509. https://doi.org/10.1016/j.foodchem.2004.01.065.
    48. Zhou T., Prather E. R., Garrison D. E., Zuo L. (2018). Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. 19: E417. https://doi.org/10.3390/ijms19020417.
    49. Zur I, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E et al (2014) Antioxidant activity and ROS tolerance in triticale (xTriticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-014-0515-3.
  • Downloads

  • How to Cite

    Nawaf, S. S. ., Malla, S. ., & Kalyani , M. I. . (2025). Antioxidant efficacy of synthesized composite copper lutein nano nutraceuticals ‎from brassica oleracea var italica. International Journal of Basic and Applied Sciences, 14(1), 445-452. https://doi.org/10.14419/fwg9s764