Machine Learning Models for Road Accident Prediction for Smart Cities: A Comprehensive Analysis
-
https://doi.org/10.14419/gw398342
Received date: April 7, 2025
Accepted date: June 3, 2025
Published date: June 26, 2025
-
Machine learning; Support Vector Machine; Gradient Boosting; Random Forest; Multilayer Perceptron; K-Nearest Neighbors -
Abstract
Road accidents are still a prominent urban issue, worsened by a growing population and uncertain weather patterns. Conventional accident prediction models use static historical data, which does not enable them to be responsive to real-time traffic patterns. This research is responding to the demand for predictive models that are adaptive, smart, and can facilitate smart city infrastructure through real-time data integration. Machine learning models—Multilayer Perceptron, Gradient Boosting, Random Forest, Support Vector Machine, and K-Nearest Neighbors—were tested with both historical and real-time traffic data. The models were optimized and trained on varied datasets to improve prediction accuracy. Of these, Gradient Boosting recorded the highest accuracy at 88.1%, followed by Random Forest at 83.73%, showing the power of ensemble learning techniques in predicting accidents. This research emphasizes the significance of real-time data integration for accident prediction and prevention. Merging environmental elements like weather conditions and traffic congestion improves prediction quality, allowing proactive prevention of accidents. By leveraging these models, cities can shift towards data-based road management, infrastructure planning, and congestion control. The results show that real-time models of accident prediction have the potential to enhance urban safety, opening the door to smarter and more efficient traffic management systems.
-
References
- Santos, D., Saias, J., Quaresma, P., & Nogueira, V. B. (2021). Machine learning approaches traffic accident analysis and hotspot prediction. Com-puters, 10(12). https://doi.org/10.3390/computers10120157
- Infante, P., Jacinto, G., Afonso, A., Rego, L., Nogueira, V., Quaresma, P., Saias, J., Santos, D., Nogueira, P., Silva, M., Costa, R. P., Gois, P., & Manuel, P. (2022). Comparison of Statistical and Machine-Learning Models on Road Traffic Accident Severity Classification. Computers, 11(5). https://doi.org/10.3390/computers11050080
- Hemalatha, M., and Dhuwaraganath, S. (2024). Road Accident Prediction Using Machine Learning, Int. J. Sci. Res. Sci. Technol., 11(2), pp. 454–457. https://doi: 10.32628/IJSRST52411284.
- Ahmed, S., Hossain, M. A., Bhuiyan, M. M. I., & Ray, S. K. (2021). A Comparative Study of Machine Learning Algorithms to Predict Road Acci-dent Severity. 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), 390–397. https://doi.org/10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00069
- Zhang, Z., Yang, W., & Wushour, S. (2020). Traffic accident prediction based on LSTM-GBRT model. Journal of Control Science and Engineering, pp. 1–10. https://doi.org/10.1155/2020/4206919
- Manisha, V., Bharti, S., & Naveen K, C. (2024). Comparative study of machines learning algorithms for traffic accident prediction and prevention. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–5. https://doi.org/10.1109/icccnt61001.2024.10723916
- Ahmed, S., Hossain, M. A., Ray, S. K., Bhuiyan, M. M. I., & Sabuj, S. R. (2023). A study on road accident prediction and contributing factors us-ing explainable machine learning models: analysis and performance. Transportation Research Interdisciplinary Perspectives, 19. https://doi.org/10.1016/j.trip.2023.100814
- Yassin, S. S., & Pooja. (2020). Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm approach. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-3125-1
- R. Arunachalam, S. Peararulselvi, M. Saraswathi, & M. Saraswathi. (2023). Road Accident Severity Prediction using Machine Learning. Interna-tional Journal of Advanced Research in Science, Communication and Technology, 631–636. https://doi.org/10.48175/ijarsct-9629
- Ma, W., & Yuan, Z. (2018). Analysis and Comparison of Traffic Accident Regression Prediction Model. 3rd International conference on electro-mechanical control technology and transportation https://doi: 10.5220/0006970803640369
- Ballamudi, V. K. R. (2019). Road Accident Analysis and Prediction using Machine Learning Algorithmic Approaches. Asian Journal of Humanity, Art and Literature, 6(2), 185–192. https://doi.org/10.18034/ajhal.v6i2.529
- Shweta, Yadav, J., Batra, K., & Goel, A. K. (2021). A Framework for Analyzing Road Accidents Using Machine Learning Paradigms. Journal of Physics: Conference Series, 1950(1). https://doi.org/10.1088/1742-6596/1950/1/012072
- Vinoth Kumar, L., & Umadevi, G. (n.d.). Accident Prediction Model: A Comparison of Conventional and Advanced Modeling Methods. Interna-tional Journal of Engineering Research & Technology. https://doi.org/10.17577/ijertconv4is24001
- Mohanraj, E., Dakshnamoorthy, M., & Karthikeyan, S. (2022). Accident prevention using IoT. International Journal of Health Sciences, 1124–1135. https://doi.org/10.53730/ijhs.v6ns6.9742
- Vicent, J. F., Curado, M., Oliver, J. L., & Pérez-Sala, L. (2025). A novel approach to predict the traffic accident assistance based on deep learning. Neural Computing and Applications. https://doi.org/10.1007/s00521-024-10939-z
- Akour, M., Al Qasem, O., & Hanandeh, F. (2022). Traffic Accident Severity Prediction: A comparison Study. International Journal of Transporta-tion Systems, 7.
- Pourroostaei Ardakani, S., Liang, X., Mengistu, K. T., So, R. S., Wei, X., He, B., & Cheshmehzangi, A. (2023). Road Car Accident Prediction Us-ing a Machine-Learning-Enabled Data Analysis. Sustainability (Switzerland), 15(7). https://doi.org/10.3390/su15075939
- R. Vanitha, & M. Swedha. (2023). Prediction of Road Accidents Using Machine Learning Algorithms. Middle East Journal of Applied Science & Technology, 06(02), 64–75. https://doi.org/10.46431/mejast.2023.6208
- Behboudi, N., Moosavi, S., & Ramnath, R. (2024). Recent Advances in Traffic Accident Analysis and Prediction: A Comprehensive Review of Ma-chine Learning Techniques. http://arxiv.org/abs/2406.13968
- Chirag, P., & Supreetha, M. (2022). Road Accident Prediction and Classification using Machine Learning. MysuruCon 2022 - 2022 IEEE 2nd My-sore Sub Section International Conference. https://doi.org/10.1109/MysuruCon55714.2022.9972671
- Sudheera, K. S. S., Prahlad, N., Abhinav, P. P., Kedharnath, M., Jyothi, Dr. N., & Subramanyam, M. (2024). Road Accident Prediction Using Ma-chine and Deep Learning Techniques. Educational Administration Theory and Practices. https://doi.org/10.53555/kuey.v30i6.5485
- Yiu, m. I. C. H. A. E. L., may, d., & SMITH, N. (1989). Applications of accident prediction models.
- Angadi, V. S., & Halyal, S. (2024). Forecasting Road Accidents Using Deep Learning Approach: Policies to Improve Road Safety. Journal of Soft Computing in Civil Engineering, 8(4), 27–53. https://doi.org/10.22115/scce.2023.399598.1654
- S, Dr. S., B J, A., D, V., D, M. G., & . A. (2022). Road Accident Analysis and Prediction Model using a Data Mining Hybrid Technique. Interna-tional Journal for Research in Applied Science and Engineering Technology, 10(7), 4300–4304. https://doi.org/10.22214/ijraset.2022.45977
- Esswidi, A., Ardchir, S., Daif, A., & Azouazi, M. (2023). Severity Prediction for Traffic Road Accidents. Journal of Theoretical and Applied In-formation Technology, 101(8).
- Brandt, P., Munim, Z. H., Chaal, M., & Kang, H. S. (2024). Maritime accident risk prediction integrating weather data using machine learning. Transportation Research Part D: Transport and Environment, 136. https://doi.org/10.1016/j.trd.2024.104388
- Theofilatos, A., Yannis, G., Kopelias, P., & Papadimitriou, F. (2016). Predicting Road Accidents: A Rare-events Modeling Approach. Transporta-tion Research Procedia, 14, 3399–3405. https://doi.org/10.1016/j.trpro.2016.05.293
- Berhanu, Y., Schröder, D., Wodajo, B. T., & Alemayehu, E. (2024). Machine learning for predictions of road traffic accidents and spatial network analysis for safe routing on accident and congestion-prone road networks. Results in Engineering, 23. https://doi.org/10.1016/j.rineng.2024.102737
- Jaji, M. E. (n.d.). Predictive Analytics of Road Traffic Incidents, A Machine Learning Predictive Analytics of Road Traffic Incidents, A Machine Learning Approach Approach. https://repository.rit.edu/theses
- Grigorev, A., Mihaita, A. S., Saleh, K., & Chen, F. (2024). Automatic Accident Detection, Segmentation and Duration Prediction Using Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 25(2), 1547–1568. https://doi.org/10.1109/TITS.2023.3323636
- Bedane, Tarikwa Tesfa (2024), “Road Traffic Accident Dataset of Addis Ababa City”, Mendeley Data, V2, doi: 10.17632/xytv86278f.2
- Gao, X., Jiang, X., Haworth, J., Zhuang, D., Wang, S., Chen, H., & Law, S. (2024). Uncertainty-aware probabilistic graph neural networks for road-level traffic crash prediction. Accident Analysis & Prevention, 208, 107801.
- ZHAO, H., CHENG, H., DING, Y., ZHANG, H., & ZHU, H. (2020). Research on traffic accident risk prediction algorithm of edge internet of vehicles based on deep learning. 电子与信息学报, 42(1), 50-57.
- Pathik, N., Gupta, R. K., Sahu, Y., Sharma, A., Masud, M., & Baz, M. (2022). AI enabled accident detection and alert system using IoT and deep learning for smart cities. Sustainability, 14(13), 7701
-
Downloads
-
How to Cite
Thanikachalam, R. ., Babu, M. ., Rahuman, D. A. S. ., Swain, S. ., Chandrasekaran, S. ., & Veeran, R. . (2025). Machine Learning Models for Road Accident Prediction for Smart Cities: A Comprehensive Analysis. International Journal of Basic and Applied Sciences, 14(2), 391-400. https://doi.org/10.14419/gw398342
