Machine learning-based predictive maintenance: enhancing ‎industrial reliability through data-driven approaches

  • Authors

    • S.J. Subhashini Department of Computer Science and Engineering, SRM Madurai College for Engineering and Technology, Sivagangai, India
    • Syed Asif Basha Department of Computer Engineering, College of Computer Science,King Khalid University, Abha-614111,K. S., A.
    • B. Srinivasa Rao Department of Computer Science and Engineering (Data Science)، Geethanjali College of Engineering and Technology, Cheeryal, Med‎chal, Hyderabad, Telangana -501301, India
    • S. Gayathri Department of Artificial Intelligence and Data Science, K.Ramakrishnan College of Engineering, Tiruchirappalli, India
    • Amol Mangrulkar MCT's Rajiv Gandhi Institute of Technology, Mumbai, India
    https://doi.org/10.14419/05tz0p10

    Received date: March 18, 2025

    Accepted date: May 1, 2025

    Published date: May 22, 2025

  • Data-Driven Maintenance; Failure Prediction; Industrial Equipment; Machine Learning; Predictive Maintenance
  • Abstract

    This study investigated the application of machine learning for predictive maintenance (PM) using synthetic data simulating industrial ma-‎chinery failures. Different algorithms including random forest, support vector machine (SVM), artificial neural network (ANN), decision ‎tree (DT), and logistic regression (LR) were evaluated in two test scenarios. Decision tree (DT) and logistic regression (LR) showed the ‎best promise, despite challenges with data imbalance and data segmentation. However, these models are not yet suitable for industrial de-‎ployment due to the significant impact of misclassified faults. The results highlight the potential of machine learning to improve predictive ‎maintenance (PM), while further improvements are needed before it can replace human supervision‎.

  • References

    1. Achouch, M., Dimitrova, M., Dhouib, R., Ibrahim, H., Adda, M., Sattarpanah Karganroudi, S., Ziane, K., & Aminzadeh, A. (2023). Predictive maintenance and fault monitoring enabled by machine learning: Experimental analysis of a TA-48 multistage centrifugal plant compressor. Applied Sciences, 13(1790). https://doi.org/10.3390/app13031790.
    2. Zonta, T., Da Costa, C. A., Da Rosa Righi, R., De Lima, M. J., Da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. https://doi.org/10.1016/j.cie.2020.106889.
    3. Kanawaday, A., & Sane, A. (2017). Machine learning for predictive maintenance of industrial machines using IoT sensor data. In Proceedings of the IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China (p. 87). https://doi.org/10.1109/ICSESS.2017.8342870.
    4. Compare, M., Baraldi, P., & Zio, E. (2019). Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet of Things Journal, 7(4585). https://doi.org/10.1109/JIOT.2019.2957029.
    5. Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. https://doi.org/10.1016/j.eswa.2021.114598.
    6. Abouelyazid, M. (2023). Advanced Artificial Intelligence techniques for real-time predictive maintenance in industrial IoT systems: A comprehen-sive analysis and framework. Journal of AI-Assisted Scientific Discoveries, 3, 271.
    7. Bousdekis, A., Apostolou, D., & Mentzas, G. (2019). Predictive maintenance in the 4th industrial revolution: Benefits, business opportunities, and managerial implications. IEEE Engineering Management Review, 48, 57. https://doi.org/10.1109/EMR.2019.2958037.
    8. Coandă, P., Avram, M., & Constantin, V. (2020). A state of the art of predictive maintenance techniques. IOP Conference Series: Materials Science and Engineering, 997, 012039. https://doi.org/10.1088/1757-899X/997/1/012039.
    9. Nunes, P., Santos, J., & Rocha, E. (2023). Challenges in predictive maintenance—A review. CIRP Journal of Manufacturing Science and Technol-ogy, 40, 53. https://doi.org/10.1016/j.cirpj.2022.11.004.
    10. Borges, C. S. P., Marques, E. A. S., Carbas, R. J. C., Ueffing, C., Weigraebar, P., & Silva, L. F. M. D. (2021). Review on the effect of moisture and contamination on the interfacial properties of adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(527). https://doi.org/10.1177/0954406220944208.
    11. Shwetha, K. M., Praveen, B. M., & Devendra, B. K. (2024). A review on corrosion inhibitors: Types, mechanisms, electrochemical analysis, corro-sion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment. Results in Surface Interfaces, 16, 100258. https://doi.org/10.1016/j.rsurfi.2024.100258.
    12. Hellton, K. H., Tveten, M., Stakkeland, M., Engebretsen, S., Haug, O., & Aldrin, M. (2022). Real-time prediction of propulsion motor overheating using machine learning. Journal of Marine Engineering and Technology, 21, 334. https://doi.org/10.1080/20464177.2021.1978745.
    13. Mollapour, Y., Poursaeidi, E., & Pedram, O. (2022). Study of pitting corrosion under actual operating conditions of a first stage compressor blade. Engineering Failure Analysis, 131, 105822. https://doi.org/10.1016/j.engfailanal.2021.105822.
    14. Afia, A., Gougam, F., Rahmoune, C., Touzout, W., Ouelmokhtar, H., & Benazzouz, D. (2024). Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms. Transactions of the Institute of Measurement and Control, 46, 359. https://doi.org/10.1177/01423312231174939.
    15. Nie, D., Chen, X., Wu, Q., Liu, Y. (2020). Stress corrosion cracking behaviors of FV520B stainless steel used in a failed compressor impeller. Engi-neering Failure Analysis, 116, 104701. https://doi.org/10.1016/j.engfailanal.2020.104701.
    16. Li, W., Huang, R., Li, J., Liao, Y., Chen, Z., He, G., Yan, R., & Gryllias, K. (2022). A perspective survey on deep transfer learning for fault diag-nosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 167, 108487. https://doi.org/10.1016/j.ymssp.2021.108487.
    17. Nambiar, A., Aravinth, S., Sugumaran, V., Ramteke, S. M., & Marian, M. (2024). Prediction of air compressor faults with feature fusion and ma-chine learning. Knowledge-Based Systems, 304, 112519. https://doi.org/10.1016/j.knosys.2024.112519.
    18. Patil, A., Soni, G., & Prakash, A. (2024). Data-driven approaches for impending fault detection of industrial systems: A review. International Jour-nal of Systems Assurance Engineering and Management, 15, 1326. https://doi.org/10.1007/s13198-022-01841-9.
    19. Dimitrova, M., Aminzadeh, A., Meiabadi, M. S., Sattarpanah Karganroudi, S., Taheri, H., & Ibrahim, H. (2022). A survey on non-destructive smart inspection of wind turbine blades based on Industry 4.0 strategy. Applied Mechanics, 3, 1299. https://doi.org/10.3390/applmech3040075.
    20. Kliestik, T., Nica, E., Durana, P., & Popescu, G. H. (2023). Artificial Intelligence-Based Predictive Maintenance, Time-Sensitive Networking, and Big Data-Driven Algorithmic Decision-Making in the Economics of Industrial Internet of Things. Oeconomia Copernic, 14, 1097–1138. https://doi.org/10.24136/oc.2023.033.
    21. Doran, N.M.; Badareu, G.; Puiu, S. Automation Systems Implications on Economic Performance of Industrial Sectors in Selected European Union Countries. Systems 2025, 13, 26. https://doi.org/10.3390/systems13010026
  • Downloads

  • How to Cite

    Subhashini, S., Basha, S. A. ., Rao, B. S. ., Gayathri, S., & Mangrulkar , A. . (2025). Machine learning-based predictive maintenance: enhancing ‎industrial reliability through data-driven approaches. International Journal of Basic and Applied Sciences, 14(1), 339-349. https://doi.org/10.14419/05tz0p10