Malware Detection by Visual Image Comparison between Four Different Hash Algorithms of Various Recognized Files

  • Authors

    • Shashi Kant Mishra Department of Computer Science & Engineering, Guru Nanak Institute of Technology, Hyderabad (Telangana)
    • Syed Asif Basha Department of Computer Engineering, College of Computer Science, King Khalid University, Abha-61421, K.S, A
    • Chiranjib Goswami Department of Electronics and Communication Engineering, Asansol Engineering College, Asansol, West Bengal- 713305, India
    • Chitra. M Department of Electronics and Communication Engineering, Rajalakshmi Institute of Technology, Chennai, Tamilnadu,India
    • Ajeet Kumar Srivastava Department of Electronics and Communication Engineering, School of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh-208024, India
    • M. R. Arun Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai – 600062, Tamilnadu, India
    • Bhaskar Roy Department of CSE(AIML), Asansol Engineering College, Asansol, West Bengal- 713305, India
    https://doi.org/10.14419/xx1ere40

    Received date: March 18, 2025

    Accepted date: May 1, 2025

    Published date: June 25, 2025

  • Antivirus labeling; Byteclass view; Dotplot visualization; Hash algorithms; Malware detection
  • Abstract

    Malware detection is a critical aspect of cybersecurity, and various techniques are employed to identify and combat malicious software. One approach involves using hash algorithms to generate unique identifiers for files, which can then be compared to known malware signatures. While hash algorithms are typically used for data integrity and digital signatures, there are specialized hash functions that can be applied to visual images. These algorithms, such as aHash, dHash, pHash, and wHash, offer unique capabilities for detecting malware through visual image analysis. The objective of this work is to perform malware detection by visual comparison between different Hash algorithms of vari-ous recognized malware, dubious files and clean files. It is expected that the identification of patterns will help in the faster detection of malicious code and even detect them when other mechanisms would not.

  • References

    1. Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., & Mao, L. (2019). MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Computers & Security, 83, 208–233. https://doi.org/10.1016/j.cose.2019.02.015
    2. Burnap, P., French, R., Turner, F., & Jones, K. (2018). Malware classification using self-organising feature maps and machine activity data. Com-puters & Security, 73, 399–410.
    3. Bushby, A. (2019). How deception can change cybersecurity defences. Computer Fraud & Security, 2019(1), 12–14.
    4. Ankalkoti, P. (2017). Survey on search engine optimization tools and techniques. Imperial Journal of Interdisciplinary Research, 3, 40–43.
    5. Singh, J., & Singh, J. (2021). A survey on machine learning-based malware detection in executable files. Journal of Systems Architecture, 112, Arti-cle 101861.
    6. Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., & Glezer, C. (2007). Applying machine learning techniques for the detection of malicious code in network traffic. In J. Hertzberg, M. Beetz, & R. Englert (Eds.), KI 2007: Advances in Artificial Intelligence (pp. 44–50). Springer.
    7. Schultz, M., Eskin, E., Zadok, F., & Stolfo, S. (2001). Data mining methods for the detection of new malicious executables. Proceedings 2001 IEEE Symposium on Security and Privacy, 38–49.
    8. Gibert, D., Mateu, C., & Planes, J. (2020). The rise of machine learning for detection and classification of malware: research developments, trends and challenges. Journal of Network and Computer Applications, 153, Article 102526.
    9. Dietterich, T. G. (2009). Machine learning in ecosystem informatics and sustainability. Proceedings of the 21st International Joint Conference on Artificial Intelligence, 8–13.
    10. Bairwa, A. K., & Joshi, S. (2021). Mutual authentication of nodes using a session token with fingerprint and MAC address validation. Egyptian Informatics Journal, 22(4), 479–491.
    11. Sayadi, H., Patel, N., SMPD, Sasan, A., Rafatirad, S., & Homayoun, H. (2018). Ensemble learning for effective run-time hardware-based malware detection: A comprehensive analysis and classification. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 1–6.
    12. Sayadi, H., Mohammadi Makrani, H., Randive, O., SMPD, Rafatirad, S., & Homayoun, H. (2018). Customized machine learning-based hardware-assisted malware detection in embedded devices. 2018 IEEE TrustCom/BigDataSE, 1685–1688. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00251
    13. Jeong, H. S., & Kwak, J. (2022). Massive IoT malware classification method using binary lifting. Intelligent Automation & Soft Computing, 32, 467–481.
    14. Pektas, A., & Acarman, T. (2017). Classification of malware families based on runtime behaviors. Journal of Information Security and Applications, 37, 91–100.
    15. Seshagiri, P., Vazhayil, A., & Sriram, P. (2016). Ama: Static code analysis of web page for the detection of malicious scripts. Procedia Computer Science, 93, 768–773.
    16. Jayasinghe, G., C. J., S., & Bertok, P. (2014). Efficient and effective realtime prediction of drive-by download attacks. Journal of Network and Computer Applications, 38, 135–149.
    17. Kaplan, S., & Siefert, C. (2013). Nofus: Automatically detecting obfuscated JavaScript code. Microsoft Research Technical Report, MSR-TR-2011-57.
    18. Acharya, J., Chuadhary, A., Chhabria, A., & Jangale, S. (2021). Detecting malware, malicious URLs and virus using machine learning and signature matching. 2021 2nd International Conference for Emerging Technology (INCET), 1–5.
    19. Udayakumar, N., Saglani, V. J., Cupta, A. V., & Subbulakshmi, T. (2018). Malware classification using machine learning algorithms. 2018 Interna-tional Conference on Trends in Electronics and Informatics (ICOEI), 1–9.
    20. Kumar, A., Abhishek, K., Shah, K., Patel, D., Jain, Y., Chheda, H., & Nerurkar, P. (2020). Malware detection using machine learning. In B. Vil-lazón-Terrazas, F. Ortiz-Rodríguez, S. M. Tiwari, & S. K. Shandilya (Eds.), Knowledge Graphs and Semantic Web (pp. 61–71). Springer.
    21. Choudhary, S., & Sharma, A. (2020). Malware detection & classification using machine learning. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), 1–4.
    22. Naseer, M., Rusdi, J. F., Shanono, N. M., Salam, S., Muslim, Z. B., Abu, N. A., & Abadi, I. (2021). Malware detection: Issues and challenges. Journal of Physics: Conference Series, 1807(1), Article 012011.
    23. Gavriluţ, D., Cimpoeşu, M., Anton, D., & Ciortuz, L. (2009). Malware detection using machine learning. 2009 International Multiconference on Computer Science and Information Technology, 735–741.
    24. Agarkar, S., & Ghosh, S. (2020). Malware detection & classification using machine learning. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), 1–6. https://doi.org/10.1109/iSSSC50941.2020.9358835
    25. Ayoub, H. G., & Suhail, A. T. (2021). Review of encrypted virus: Detection analyses methods. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1946–1952.
    26. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2011). Detecting unknown malicious code by applying classification techniques on opcode patterns. Security and Informatics, 1(1). https://doi.org/10.1186/2190-8532-1-1
    27. Sharma, S., Rama Krishna, C., & Sahay, S. K. (2019). Detection of advanced malware by machine learning techniques. In K. Ray, T. K. Sharma, S. Rawat, R. K. Saini, & A. Bandyopadhyay (Eds.), Soft Computing: Theories and Applications (pp. 333–342). Springer.
    28. Yang, H., He, Q., Liu, Z., & Zhang, Q. (2021). Malicious encryption traffic detection based on NLP. Security and Communication Networks, 2021, Article ID 9960822, 10 pages.
    29. Wu, Q., Zhu, X., & Liu, B. (2021). A survey of Android malware static detection technology based on machine learning. Mobile Information Sys-tems, 2021, Article ID 8896013, 18 pages.
    30. Rathore, H., Agarwal, S., Sahay, S. K., & Sewak, M. (2018). Malware detection using machine learning and deep learning. In A. Mondal, H. Gupta, J. Srivastava, P. K. Reddy, & D. Somayajulu (Eds.), Big Data Analytics (pp. 402–411). Springer.
    31. Yan, J., Qi, Y., & Rao, Q. (2018). Detecting malware with an ensemble method based on deep neural network. Security and Communication Net-works, Article 7247095, 1–16.
    32. Bairwa, A. K., & Joshi, S. (2021). Dingo optimizer: A nature-inspired metaheuristic approach for engineering problems. Mathematical Problems in Engineering, 2021, Article ID 6612057, 12 pages.
    33. Darabian, H., Dehghantanha, A., Hashemi, S., Homayoun, S., & Choo, K. K. R. (2020). An opcode-based technique for polymorphic Internet of Things malware detection. Concurrency and Computation: Practice and Experience, 32, e5173
  • Downloads

  • How to Cite

    Mishra, S. K., Basha, S. A. ., Goswami, C. ., M , C., Srivastava , A. K., Arun, M. R. ., & Roy , B. . (2025). Malware Detection by Visual Image Comparison between Four Different Hash Algorithms of Various Recognized Files. International Journal of Basic and Applied Sciences, 14(2), 371-390. https://doi.org/10.14419/xx1ere40