Seafloor morphology and potential gas hydrate distribution in the offshore Niger Delta

  • Authors

    • Muslim B Aminu Adekunle Ajasin University
    • Samuel B Ojo
    2024-02-12
    https://doi.org/10.14419/wwajt225
  • Bottom simulating reflectors (BSRs) and seismic pipe features have been used as proxies for defining the distribution of gas hydrate sediments in the offshore Niger Delta. This is the most extensive mapping of gas hydrate sediments in the Delta as of today. The seismic data merge comes from multiple surveys acquired with different parameters and seismic resolutions over the course of decades of oil and gas exploration in the region. Indicated gas hydrate distribution generally follows the structural fabric of the Niger Delta with BSRs occurring along the apexes of the thrust-related ridges that have bathymetric relief on the seafloor. The presence of swarms of seismic pipe features landwards of BSR locations suggests hydrates occur beyond BSR locations. The potential gas hydrates sediment acreage in offshore Niger Delta is 17600 sq-km, representing 20% of the area with a thickness of the gas hydrate stability zone reaching 440 m in the more outboard regions of the Delta. Total gas hydrates sediment coverage likely exceeds this value as BSRs become indistinguishable from sediment strata in regions of flat dips. The presence of double BSRs further suggests the presence of thermogenic gas hydrates in the region and allows to extend the thickness of the potential hydrate zone to 550 m in the outboard regions of the Delta.

  • References

    1. A. Adeogba, T. R. McHargue, S. A. Graham, Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope. American Association of Petroleum Geologists Bulletin. 89, (2005) 627–643. https://doi.org/10.1306/11200404025
    2. M. B. Aminu, S. B. Ojo, Application of spectral decomposition and neural networks to characterise deep turbidite systems in the outer fold and thrust belt of the Niger Delta. Geophysical Prospecting. 66(4), (2018), 736–752. https://doi.org/10.1111/1365-2478.12569.
    3. M. B. Aminu, S. B. Ojo, Multiple Bottom-Simulating Reflections in the Deepwater Niger Delta: Seismic Character and Inferred Gas Supply Dynamics. International Journal of Scientific Research and Engineering Development. 4(3), (2021) 316-327.
    4. A.A. Avbovbo, Tertiary lithostratigraphy of Niger Delta. American Association of Petroleum Geologist Bulletin 62, (1978) 295-306. https://doi.org/10.1306/C1EA482E-16C9-11D7-8645000102C1865D.
    5. N. L. B. Bangs, R. J. Musgrave, A. Trehu, Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following post-glacial warming, offshore Oregon. Journal of Geophysical Research 110, (2005).B03102. https://doi.org/10.1029/2004JB003293.
    6. Bertoni, J.A. Cartwright, M. Foschi, J. Martin, Spectrum of gas migration phenomena across multi-layered sealing sequences. AAPG Bull. 20, (2017) 170–821. https://doi.org/10.1306/0810171622617210.
    7. Bilotti, J. H. Shaw, Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. American Association of Petroleum Geologist Bulletin 89, (2005) 1475–1491. https://doi.org/10.1306/06130505002.
    8. Boswell, T. S. Collett (2011), Current perspectives on gas hydrate resources, Energy and Environmental Science, 4, 1206–1215, https://doi.org/10.1039/C0EE00203H.
    9. M. Brooks, W. R. Bryant, B. B. Bernard, N. R. Cameron, . The nature of gas hydrates on the Nigerian Continental slope. Annals of the New York Academy of Sciences, 912, (2000) 76 - 93. https://doi.org/10.1111/j.1749-6632.2000.tb06761.x.
    10. Burke, Longshore drift, submarine canyons fans in development of Niger Delta: American Association of Petroleum Geologist Bulletin 56, (1972) 1975-1983. https://doi.org/10.1306/819A41A2-16C5-11D7-8645000102C1865D.
    11. Cartwright, C. Santamarina, . Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Marine and Petroleum Geology 65, (2015) 126–140 https://doi.org/10.1016/j.marpetgeo.2015.03.023.
    12. Chabert, T. A. Minshull, G K. Westbrook, C. Berndt, K. E. Thatcher, S. Sudipta, Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data. Journal of Geophysical Re-search: Solid Earth 116, (2011) B12102. https://doi.org/10.1029/2011JB008211.
    13. W-C. Chi, D. L. Reed, C-S. Liu, N. Lundberg, Distribution of Bottom-Simulating Reflectors in the Offshore Taiwan Collision Zone. Terrestrial, Atmospheric and Oceanic Sciences Journal 9, (1998) 779 – 794. https://doi.org/10.3319/TAO.1998.9.4.779(TAICRUST).
    14. T. S. Collett, A. H. Johnson, C. C. Knapp, R. Boswell, Natural gas hydrates: A review, Natural gas hydrates-Energy Resource Potential and Associated Geologic Hazards, AAPG Memoir, vol. 89, (2009) 146–219, American Association of Petroleum Geologist, Tulsa, Ok-lahoma, https://doi.org/10.1306/13201142M891602.
    15. D. Connors, D. B. Denson, G. Kristiansen, D. M. Angstadt, . Compressive anticlines of the mid-outer slope, central Niger Delta. Amer-ican Association of Petroleum Geologists Bulletin 82, (1998) 1903. https://doi.org/10.1306/1D9BD7DB-172D-11D7-8645000102C1865D.
    16. Corredor, J. H. Shaw, F. Bilotti, Structural styles in the deepwater fold and thrust belts of the Niger Delta. American Association of Pe-troleum Geologists Bulletin 89, (2005) 753-780. https://doi.org/10.1306/02170504074.
    17. R. Cunningham, R. M. Lindholm, Seismic evidence for widespread gas hydrate formation, offshore west Africa, Petroleum systems of South Atlantic margins. AAPG Memoir, 73, (2000) 93-105. https://doi.org/10.1306/M73705C8.
    18. M. E. Deptuck, Z. Sylvester, C., Pirmez, C. O’Byrne, Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology 24, (2007) 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005.
    19. Doust, E. Omatsola, . Niger Delta, Divergent/passive margins basins, American Association of Petroleum Geologists Memoir 48, (1990) 201-238. https://doi.org/10.1306/M48508C4.
    20. E. J. Frankl, E. A. Cordry, The Niger Delta oil Province: Recent development, onshore and offshore. Mexico City. Seventh World Pe-troleum Congress Proceedings 2, (1967) 195-209. https://doi.org/10.1306/5D25B843-16C1-11D7-8645000102C1865D.
    21. M. B. Helgerud, J. Dvorkin, A. Nur, A. Sakai, T. Collett, Elastic-wave velocity in marine sediments with gas hydrates: Effective medi-um modeling. Geophysical Research Letters 26, (1999) 2021-2024. https://doi.org/10.1029/1999GL900421.
    22. Hesse, S. Back, D. Franke, The deep-water fold-and-thrust belt offshore NW Borneo: Gravity-driven versus basement-driven shorten-ing, Geological Society of America Bulletin, 121, (2009) 939–953, https://doi.org/10.1130/B26411.1.
    23. G. M. Ingram, T. J. Chisholm, C. J. Grant, C. A. Hedlund, P. Stuart-Smith, J. Teasdale, Deepwater North West Borneo: Hydrocarbon accumulation in an active fold and thrust belt, Marine and Petroleum Geology, 21, (2004) 879–887, https://doi.org/10.1016/j.marpetgeo.2003.12.007.
    24. Jaiswal, P. Dewangan, T. Ramprasad, C. A. Zelt, . Seismic Characterization of Hydrates in Faulted, Fine-Grained Sediments of Krish-na-Godavari Basin: Unified Imaging Journal of Geophysical Research, 117, (2012) B04306, https://doi.org/10.1029/2011JB009024.
    25. Katayama, H. Yoshioka, H. A. Takahashi M. Amo, T. Fujii, S. Sakata, Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough. FEMS. Microbiology Ecology, 92 (8) (2016) https://doi.org/10.1093/femsec/fiw093.
    26. J.B. Klauda, S.I. Sandler, Global Distribution of Methane Hydrate in Ocean Sediment. Energy and Fuels, 19 ( 2), (2005) 459–470. https://doi.org/10.1021/ef049798o.
    27. K. Kvenvolden, Gas Hydrate: Geological perspectives and Global Change, Review of Geophysics 31, (1993) 173-187. https://doi.org/10.1029/93RG00268.
    28. Lehner, P.A.C. De Ruiter, Structural History of Atlantic Margin of Africa: American Association of Petroleum Geologists Bulletin 61, (1977) 961-981. https://doi.org/10.1306/C1EA43B0-16C9-11D7-8645000102C1865D.
    29. S. Liu, S. Yu, X. Lu, et al., Microbial communities associated with thermogenic gas hydrate-bearing marine sediments in Qiong-dongnan Basin, South China Sea. Frontiers in Microbiology, 13 (2022) 1032851. https://doi.org/10.3389/fmicb.2022.1032851.
    30. Løseth, M. Gading, L. Wensaas, Hydrocarbon leakage interpreted on seismic data, Marine and Petroleum Geology, 26, (2009) 1304–1319. https://doi.org/10.1016/j.marpetgeo.2008.09.008.
    31. Maloney, R. Davies, J. Imber, S., Higgins, S. King, New insights into deformation mechanisms in the gravitationally driven Niger Delta deep-water fold and thrust belt. American Association of Petroleum Geologists Bulletin 94, (2010) 1401–1424. https://doi.org/10.1306/01051009080.
    32. Matsumoto, M. Tanahashi, Y. Kakuwa, et al., Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea: Japan Sea Shallow Gas Hydrate Project, Fire in the Ice, 17, (2017) 1-6.
    33. J.J. Miller, M.W. Lee, R. von Huene, An Analysis of a Seismic Reflection from the Base of a Gas Hydrate Zone, Offshore Peru. Ameri-can Association of Petroleum Geologists Bulletin 75, (1991) 910-924. https://doi.org/10.1306/0C9B288F-1710-11D7-8645000102C1865D.
    34. K. Morley, Growth of folds in a deep-water setting, Geosphere, 5, (2009) 59–89, https://doi.org/10.1130/GES00186.1.
    35. J. I. Nwachukwu, P. I. Chukwura, . Organic matter of Agbada Formation, Niger Delta, Nigeria. American Association of Petroleum Ge-ologist Bulletin 70, (1986) 48-55. https://doi.org/10.1306/94885624-1704-11D7-8645000102C1865D.
    36. G. Osadetz, S. Dallimore, R. Hyndman, et al, Gas Hydrates – Fuel of the Future: Characteristics, Occurrences, Significance and Re-source Potential, (2006) Canada National Energy Board.
    37. Paganoni, J. A. Cartwright, M. Foschi, R. C. Shipp, P. Van Rensbergen, Structure II gas hydrates found below the bottom-simulating reflector, Geophysical Research Letters. 43, (2016) 5696–5706 https://doi.org/10.1002/2016GL069452.
    38. Paganoni, J. A. Cartwright, M. Foschi, R. C. Shipp, P. Van Rensbergen, Relationship between fluid-escape pipes and hydrate distribu-tion in offshore Sabah (NW Borneo), Marine Geology, 395, (2018) 82-103. https://doi.org/10.1016/j.margeo.2017.09.010.
    39. J. Petersen, S. Bünz, S. Hustoft, J. Mienert, D. Klaeschen, High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift, Marine and Petroleum Geology, 29, (2010) 1981–1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006.
    40. Plaza-Faverola, S. Bünz, J. Mienert, The free gas zone beneath gas hydrate bearing sediments and its link to fluid flow: 3D seismic im-aging offshore mid Norway, Marine Geology 291, (2012) 211-226. https://doi.org/10.1016/j.margeo.2011.07.002.
    41. Popescu, Marc De Batist, G. Lericolais, H. Nouzé, J. Poort, N. Panin, W. Versteeg, H. Gillet, Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology 227, (2006) 163–176. https://doi.org/10.1016/j.margeo.2005.12.006.
    42. T. J. A. Reijers, Stratigraphy and sedimentology of the Niger Delta, Geologos 17, (2011) 133 – 162. https://doi.org/10.2478/v10118-011-0008-3.
    43. R. Rothwell, J. Thomson, G. Kähler, Low-sea-level emplacement of a very large Late Pleistocene ‘megaturbidite’ in the western Medi-terranean Sea, Nature 392, (1998) 377–380. https://doi.org/10.1038/32871.
    44. L. Ruffine, J. C. Caprais, G. Bayon, et al., Investigation on the geochemical dynamics of a hydrate-bearing pockmark in the Niger Delta. Marine and Petroleum Geology 43, (2013) 297-309. https://doi.org/10.1016/j.marpetgeo.2013.01.008.
    45. J. T. S. Sahota, Deepwater Exploration In The NW Niger Delta: Are There Parallels For Indian Exploration? 6th International Confer-ence and Exposition on Petroleum Geophysics Kolkata, India, Proceedings, (2006) P1387. https://spgindia.org/conference/6thconf_kolkata06/252.pdf
    46. N.A. Sami, J. Samgwai, B. Subramanian, Gas Hydrate Applications and Problems in Oil and Gas industry. International Journal of Sci-entific and Engineering Research, 4 (8), (2013) 1-5.
    47. J. H. Shaw, E. Novoa, C. D. Connors, Structural controls on growth stratigraphy in contractional fault-related folds, Thrust tectonics and hydrocarbon systems, American Association of Petroleum Geologist Memoir 82, (2004) 400-412. https://archives.datapages.com/data/specpubs/memoir82/CHAPTER20/CHAPTER20.HTM
    48. T. H. Shipley, M. H. Houston, R. T. Buffler, et al., Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises, American Association of Petroleum Geologist Bulletin 63, (1979) 2204–2213. https://archives.datapages.com/data/bulletns/1977-79/data/pg/0063/0012/2200/2204.htm
    49. K. C. Short, A. J. Stauble, Outline of geology of Niger Delta, American Association of Petroleum Geologist Bulletin 51, (1967) 761-799. https://doi.org/10.1306/5D25C0CF-16C1-11D7-8645000102C1865D.
    50. G. H. Sin, J. Jong, S. McGiveron, J. Fitton, A Case Study of Gas Hydrates in Offshore NW Sabah, Malaysia: Implications as a Shallow Geohazard for Exploration Drilling and a Potential Future Energy Resource. Proceeding of the National Geoscience Conference, (2017) 9-10, Kuala Lumpur.
    51. E. Sloan, (Jr), Fundamental principles and applications of natural gas hydrates, Nature, 426, (2003) 253-259. https://doi.org/10.1038/nature02135.
    52. D. E. Sloan, (Jr), C. Koh, Clathrate Hydrates of Natural Gases. 3rd Edition. CRC Press Boca Raton. USA, 2008 https://doi.org/10.1201/9781420008494.
    53. Sultan, M. Voisset, T. Marsset, et al., Detection of free gas and gas hydrate based on 3D seismic data and cone penetration testing: An example from the Nigerian Continental Slope, Marine Geology, 240(1-4), (2007) 235–255, https://doi.org/10.1016/j.margeo.2007.02.012.
    54. Sultan, G. Bohrmann, L. Ruffine, et al., Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution, Journal of Geophysical Research: Solid Earth, 119, (2014) 2679–2694, https://doi.org/10.1002/2013JB010546.
    55. Svensen, S. Planke, A. Malthe-Sørenssen, et al., Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429(3), (2004) 542 - 545. https://doi.org/10.1038/nature02566.
    56. M. L. W. Tuttle, R. R. Charpentier, M. E. Brownfield, . The Niger Delta Petroleum System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa. US Geological Survey Open-File Report 99- 50-H, Denver, Colorado, (1999) P. 70. https://doi.org/10.3133/ofr9950H.
    57. K. J. Weber, E. Daukoru, . Petroleum Geology of the Niger Delta, Tokyo. 9th World Petroleum Congress Proceedings 2, (1975) 209-211.
    58. J. G. Wei, G. Bohrmann, N. Sultan, et al., Distribution of gas hydrates in submarine pockmark deposits of the Nigerian margin inferred from infrared thermal core scanning, Processes and Products, 24-28 September 2012. Hamburg, Germany
    59. Whiteman, Nigeria –Its petroleum geology, resources and potential, Graham and Trotman, London, UK, (1982) https://doi.org/10.1007/978-94-009-7361-9.
    60. Wu, A. W. Bally, Slope tectonics - Comparisons and contrasts of structural styles of salt and shale tectonics of the Northern Gulf of Mexico with shale tectonics of Offshore Nigeria in Gulf of Guinea, Atlantic Rifts and Continental Margins - Geophysical Monograph, American Geophysical Union, Washington DC. 115, (2000) 151-172. https://doi.org/10.1029/GM115p0151.
    61. M. Zillmer, E. R. Flueh, J. Petersen, Seismic investigation of a bottom-simulating reflector and quantification of gas hydrate in the Black Sea. Geophysical Journal International 161, (2005) 662–678. https://doi.org/10.1111/j.1365-246X.2005.02635.x.
    62. Liang, Z. Zhang, P. Su, Z. Sha, S. Yang, Evaluation of gas hydrate-bearing sediments below the conventional bottom-simulating reflec-tion on the northern slope of the South China Sea, Interpretation 5, (2017) 1–41. https://doi.org/10.1190/INT-2016-0219.1.
  • Downloads

  • How to Cite

    B Aminu, M., & Samuel B Ojo. (2024). Seafloor morphology and potential gas hydrate distribution in the offshore Niger Delta. International Journal of Advanced Geosciences, 12(1), 17-26. https://doi.org/10.14419/wwajt225