Geochemistry of Amphibolites in Akom II, Nyong Series, North Western Border of the Congo Craton, South Cameroon

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The garnet amphibolites, from the Akom II area in the Archaean Congo Craton, were examined to determine the geochemical affinity and tectonic environment. The study uses mineral assemblages and whole-rock geochemistry to identify the geochemical affinity and tectonic setting of the amphibolites associated with monzogabbro and pyroxenites. The studied rocks of Akom II are garnet amphibolites. Mineralogically, the rocks contain hornblende + plagioclase + garnet ± quartz ± epidote ± apatite ± opaque, indicating that they could have been formed from a basic igneous protolith. The geochemical signature indicates that the rocks are tholeiitic in nature. They are similar to the metamorphosed equivalents of ocean island basalts (OIB), with characteristics typical of Volcanic Arc-Basalt (VAB). The geotectonic diagrams confirm the tholeiitic nature of these amphibolites. High field strength elements ratios (Nb/Ta) range from 14-16, which corresponds to Volcanic Arc Basalt (VAB). The primitive mantle normalized patterns of these rocks show negative anomalies in Ta and Ti suggesting a geotectonic signature characteristic of a subduction zone, consequently suggesting the existence of a suture zone in the study area.

     

     

     

  • Keywords


    Amphibolites; Congo Craton; Geochemistry; Geotectonic Environment; South Cameroon.

  • References


      [1] Aye BA, Sababa E & Ndjigui PD (2017), Geochemistry of S, Cu, Ni, Cr and Au-PG from in the garnet amphibolites the Akom II area in the Archaean Cameroon. Chemie der Erde 77, 81–93. https://doi.org/10.1016/j.chemer.2017.01.009.

      [2] Baker IA, Gamble JA & Graham IJ (1994), The age, geology and geochemistry of the Tapuaenuku Igneous Complex, Marlborough, New Zealand. Journal of Geology and Geophysics 37:3, 249-268. https://doi.org/10.1080/00288306.1994.9514620.

      [3] Balaram V, Singh SP, Satyanarayanan M & Anjaiah KV (2013), Platinum group elements geochemistry of ultramafic and associated rocks from Pindar in Madawara Igneous Complex, Bundelkhand massif, central India. Journal of Earth Systems Sciences 122, 1, 79–91. https://doi.org/10.1007/s12040-012-0260-0.

      [4] Baumgartner RJ, Zaccarini F, Garuti G & Thalhammer, OAR (2012), Mineralogical and geochemical investigation of layered chromitites from the Bracco–Gabbro complex, Ligurian ophiolite, Italy. Contributions to Mineralogy and Petrology 165, 477– 493. https://doi.org/10.1007/s00410-012-0818-5.

      [5] Condie KC (1997), Sources of proterozoic mafic dyke Swarms: constraints from Th/Ta and La/Yb ratios. Precambrian Research 81, 3–14. https://doi.org/10.1016/S0301-9268(96)00020-4.

      [6] De La Roche H (1965), Sur l’existence de plusieurs faciès géochimiques dans les schistes paléozoïques des pyrénées luchonnaises. Geologische Rundschau 55, 274–301. https://doi.org/10.1007/BF01765767.

      [7] Ebah Abeng SA, Ndjigui P-D, Aye AB, Tessontsap T & Bilong P (2012), Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo craton): implications for Au-PGE exploration. Journal of Geochemical Exploration 114, 1-19. https://doi.org/10.1016/j.gexplo.2011.11.003.

      [8] Faleiros FM, Ferrari VC, Costa VS & Campanha GAC (2011), Geoquímica e petrogênese de metabasitos do Grupo Votuverava (Terreno Apiaí, Cinturão Ribeira Meridional): Evidências de uma bacia retroarco Calimiana. Geologia USP, Série Científica 11(2):135-155. https://doi.org/10.5327/Z1519-874X2011000200008.

      [9] Floyd PA & Winchester JA (1975), Magma-type and tectonic setting discrimination using immobile elements. Earth Planetary Science Letters 27, 211–218. https://doi.org/10.1016/0012-821X(75)90031-X.

      [10] Fozing EM, Kwékam M, Dedzo MG, Asaah NE A, Njanko T, Kouémo JT, Awoum JE & Njonfang E (2019), Petrography and geochemistry of amphibolites from the Fomopéa Pluton (West Cameroon): Origin and geodynamic setting. Journal of African Earth Sciences 154, 181–194. https://doi.org/10.1016/j.jafrearsci.2019.03.024.

      [11] Gomez-Pugnaire MT, Azor A, Fernandez-Soler J M & Lopez Sanchez-Vizcaıno V (2003), The amphibolites from the Ossa–Morena / Central Iberian Variscan suture (Southwestern Iberian Massif): geochemistry and tectonic interpretation. Lithos 68, 23–42. https://doi.org/10.1016/S0024-4937(03)00018-5.

      [12] Jensen LS (1976), A new cation plot for classifying subalkalic volcanic rocks. Ontario Geological Survey Miscellaneous paper 66.

      [13] Irvine TN, & Baragar W.R.A (1971), A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548. https://doi.org/10.1139/e71-055.

      [14] Kakar M I, Khan M, Mahmood K, & Kerr A C (2014), Facies and distribution of metamorphic rocks beneath the Muslim Bagh ophiolite (NW Pakistan): tectonic implications. Journal of Himalayan Earth Sciences. 47 (2).

      [15] Kakar MI, Mahmood K, Khan & Plavsa D (2015), Petrology and geochemistry of amphibolites and greenschists from the metamorphic sole of the Muslim Bagh ophiolite (Pakistan): implications for protolith and ophiolite emplacement. Arabian Journal of Geosciences 8, 6105–6120. https://doi.org/10.1007/s12517-014-1613-6.

      [16] Le Bas MJ, Le Maitre RW, Streckeisen A & Zanettin B (1986), A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27, 745-750. https://doi.org/10.1093/petrology/27.3.745.

      [17] Leybourne M I & Johannesson K H (2008), Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochimica et Cosmochimica Acta 72, 5962–5983. https://doi.org/10.1016/j.gca.2008.09.022.

      [18] Maniesi V & Oliveira MAF (2000), Petrogênese dos metabasitos com afinidades dos toleítos de fundo oceânico das regiões de Adrianópolise Campo Largo / PR. Revista Brasileira de Geociências 30 (4), 607-614. https://doi.org/10.25249/0375-7536.2000304607614.

      [19] Martin H & Moyen J-P, (2002), Secular changes in tonalite–trondhjemite–granodiorite composition as markers of the progressive cooling of Earth. Geology 30, 319–322. https://doi.org/10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2.

      [20] Maurizot P, Abessolo A, Feybesse A, Johan J.L & Lecomte P (1986) Etude et prospection minières du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. 85-CMR 066. BRGM.

      [21] McDonough WF & Sun S-S (1995), The composition of the Earth. Chemical Geology 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.

      [22] Mountain BW & Wood SA (1988), Chemical controls on the solubility, transport, and deposition of platinum and palladium in hydrothermal solutions: a thermodynamic approach. Economic Geology 83, 492-510. https://doi.org/10.2113/gsecongeo.83.3.492.

      [23] Munyanyiwa H (1997), Geochemistry of amphibolites and quartzofeldspathic gneisses in the Pan-African Zambezi belt, northwest Zimbabwe: evidence for bimodal magmatism in a Continental rift setting. Precambrian Research 81, 179-196. https://doi.org/10.1016/S0301-9268(96)00034-4.

      [24] Nédélec A, Nsifa EN & Martin H (1990), Major and trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution. Precambrian Research 47, 35–50. https://doi.org/10.1016/0301-9268(90)90029-P.

      [25] Nzenti JP, Barbey P, Macaudiere JP & Soba D (1988), Origin and evolution of the late Precambrian high grade Yaoundé gneisses (Cameroon). Precambrian Research 38, 91–109. https://doi.org/10.1016/0301-9268(88)90086-1.

      [26] Polat A (2014), Geochemistry of subduction-related mafic to felsic volcanic rocks of the late Archean Wawa greenstone belts, Superior Province, Canada. Journal of Geophysics and Engineering Science 51, 277–295. https://doi.org/10.1007/s007770050064.

      [27] Penaye J, Toteu SF, Michard A, Bertrand JM & Dautel D (1989), Reliques granulitiques d’âge Protérozoıque inférieur dans la zone mobile Panafricaine d'Afrique Centrale au Cameroun; géochronologie U/Pb sur zircons. Comptes rendus de l'Académie des Sciences Paris 309, 315–318.

      [28] Penaye J, Toteu SF, Tchameni R, Van Schmus W R, Tchakounté J, Ganwa A, Minyem D & Nsifa, NE (2004), The 2.1 Ga West African Belt in Cameroon: extension and evolution. Journal of African Earth Sciences 39, 1196-1202. https://doi.org/10.1016/j.jafrearsci.2004.07.053.

      [29] Shang CK, Liégeois J-P, Satir M & Nsifa EN (2010), Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton. Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes. Gondwana Research 18, 337-355. https://doi.org/10.1016/j.gr.2010.02.008.

      [30] Smithies RH, Champion DC & Cassidy KF (2003), Formation of Earth’s early Archaean continental crust. Precambrian Research 127, 89–101. https://doi.org/10.1016/S0301-9268(03)00182-7.

      [31] Srivastava RK (2012), Petrological and Geochemical Studies of Paleoproterozoic Mafic Dykes from the Chitrangi Region, Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone: Petrogenetic and Tectonic Significance. Journal Geological Society of India 80, 369-381. https://doi.org/10.1007/s12594-012-0155-3.

      [32] Sun SS & McDonough WF (1989), Chemical and Isotopic Systematic of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunder, A.D. and Norry, M.J., Eds., Magmatism in the Ocean Basins, Geological Society, Special Publications London 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

      [33] Szczepanski J & Oberc-Dziedzic T (1998), Geochemistry of amphibolites from the Strzelin crystalline massif, Fore-Sudetic Block, SW Poland. Journal of Mineralogy and Geochemistry 173, 23 – 40. https://doi.org/10.1127/njma/173/1998/23.

      [34] Tchameni R, Pouclet A, Mezger K, Nsifa EN & Vicat JP (2004), Single zircon Pb-Pb and Sm-Nd whole rock ages for the Ebolowa greenstone belts: evidence for pre-2.9 Ga terranes in the Ntem Complex (South Cameroon). Journal of Cameroon Academic Sciences 4, 235-246.

      [35] Toteu SF, Van Schmus WR, Penaye J & Nyobe JB (1994), U-Pb and Sm-Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Research 67, 321-347. https://doi.org/10.1016/0301-9268(94)90014-0.

      [36] Toteu SF, Yongue RF, Penaye J, Tchakounte J, Seme Mouangue AC, Van Schmus WR, Deloule E & Stendal H (2006), U–Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. Journal of African Earth Sciences 44, 479–493. https://doi.org/10.1016/j.jafrearsci.2005.11.015.

      [37] Xia LQ 2014, The geochemical criteria to distinguish continental basalts from arc related ones. Earth-Science Reviews 139, 195-212. https://doi.org/10.1016/j.earscirev.2014.09.006.

      [38] Xu D, Xia B, Bakun-Czubarow N, Bachlinski R, Li P, Chen G & Chen T (2008) Geochemistry and Sr-Nd isotope systematic of metabasites in the Tunchang area, Hainan Island, South China: implications for petrogenesis and tectonic setting. Mineralogy and Petrology 92 (3-4), 361-391. https://doi.org/10.1007/s00710-007-0198-0.

      [39] Wang YC, Prichard HM, Zhou MF & Fisher PC (2008) Platinum-group minerals from the Jinbaoshan Pd-Pt deposit, SW China: evidence for magmatic origin and hydrothermal alteration. Mineralium Deposita 41, 791-803. https://doi.org/10.1007/s00126-008-0196-0.


 

View

Download

Article ID: 31467
 
DOI: 10.14419/ijag.v9i1.31467




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.