Petrography and geochemistry of the granitoids and associated volcanic rocks of the northern part of Kushaka and Birnin Gwari schist belts, NW Nigeria: implications for provenance and geological setting

  • Authors

    • Kehinde Oluyede ''Ahmadu Bello University, Zaria''
    • Ibrahim Garba Ahmadu Bello University, Zaria
    • Umar Danbatta Ahmadu Bello University, Zaria
    • Paul Ogunleye Ahmadu Bello University, Zaria
    • Urs Klötzli Department of Lithospheric Research, University of Vienna, Austria
    2021-07-24
    https://doi.org/10.14419/ijag.v9i2.31269
  • Kushaka, Birnin Gwari, Basalt, Granodiorite, Granitoid, Island Arc.
  • The granitoids and the associated volcanic rocks of the northern part of Kushaka and Birnin Gwari schist belts were emplaced in the ca. 3.5 – 1. 0 Ga remobilized basement complex terrain composed of metasedimentary and metaigneous rocks that later underwent medium- to high-grade metamorphism during the Pan-African thermo-tectonic event. They comprise dominantly of diorite, granodiorite, granite, granite gneiss and basalt, and are product of metasomatism and injections. The diorite and granodiorite occur as paleosome and the granite as leucosome with the development of high temperature minerals, locally attaining granulite facie metamorphism. Plagioclase, biotite, hornblende, pyroxene and olivine fractionation played an important role during their genesis through fractional crystallization of basaltic magma and partial melting of older dioritic-granodioritic source rock in the deep crust which were themselves ultimately derived through fusion of mantle materials contaminated by continental crust and enriched by fluids derived from oceanic crust in an arc setting. Geochemical characteristics have revealed different chemical trends in granitoids and basalts. The granitoids are calc-alkaline, ferroan and magnesian, metaluminous and peraluminous in character. They also exhibit I- and S-type signatures with enrichment in LILE, radioelements (Th and U), depletion in Nb, Sr, P and Ti, high LREE fractionation factors (La/Yb) (1.05 to 77.20), and pronounced negative Eu anomalies (Eu/Eu* = 0.34 to 1.10). Similar patterns of spidergrams show that the rocks are genetically related and were emplaced in a volcanic arc and syn-collisional setting. The basalt is tholeiitic, metaluminous and high in Fe and Mg with relative enrichment in LILE, HFSE, low and near flat LREE and HREE, low fractionation [(La/Yb)N = 1.4] with Eu/Eu* value of 1.10. It is evidently a back arc cum mid-ocean ridge (MORB) basalt. The consistent decrease in the content of MgO, Fe2O3 MnO, CaO, Sc, Cr and V of the basalt, diorites, granodiorites, and granites indicates continuous igneous crystallization process. It seems that extrusion of basaltic magmas from the sub-circular Kushaka Complex derived from subduction of oceanic crust resulted in complete change in the genesis of the magmas at the time, in this region. The granitoids and the basalt may have formed behind subducted Pan-African plate due to effects of compressional and tensional forces caused by oceanic plate roll-back which resulted to a zone of extension, parallel to the island arc. The granitoids present similar chemical characteristics to those in the other areas underlain by the basement complex and schist belts in the north and eastern parts of the Pan-African mobile belt, while basalts are similar to ophiolites and amphibolites in other schist belts of Nigeria forming a lateral continuation of the same mobile belt.

     

  • References

    1. [1] Ajaji, T., Weis, D., Giret, A. and Bouabdellah, M. (1998). Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, Northeastern Morrocco: geochemical, isotopic and geochronological evidence. Lithos 45, 371-393. https://doi.org/10.1016/S0024-4937(98)00040-1.

      [2] Adegbuyi, O. 1, Ogunyele, A. C., Odindu, M., and Erinfolami, T. 2017. Geochemical Characteristics and Petrogenesis of Basement Rocks in Idoani Area, Ondo State, Southwestern Nigeria. International Journal of Advanced Geosciences, 5 (2), 102-108 https://doi.org/10.14419/ijag.v5i2.8377.

      [3] Adekoya, J. A. 1996. The Nigerian schist belts: age and depositional environment. Implications from associated banded iron-formations. Journal of Mining Geology, Nigeria 32, 35-46.

      [4] Ajibade. A. C, Woakes, M., and Rahaman M.A (1987): Proterozoic Crustal Development in the Pan-African Regime of Nigeria. In: C. A. Kogbe (edition) “Geology of Nigeria†2nd revised edition Rock View Nigeria limited Jos, pp. 57-69. https://doi.org/10.1029/GD017p0259.

      [5] Ajibade A. C., Anyanwu, N. P. C., Okoro, A. U. and Nwajide, C. S. (2008). The Geology of Minna area. Nigeria Geological Survey Agency Bulletin No 43.

      [6] Ajibade, A. C. and Fitches, W. R. In: P. O. Oluyide 1988. (ed.) Precambrian Geology of Nigeria, Geological Survey Publication, Nigeria, pp. 45-53.

      [7] Agunleti, Y. S., Najime, T., Ibrahim, A. A. and Magaji, S. S. (2020). Geology and petrographic studies of rocks in Anka sheet 52, Northwestern Nigeria. Journal of Environmental and Earth Sciences. Vol. 10, No. 53-66.

      [8] Akinola, O. O., Talabi, A. O. and Muhammad, H. R. (2017). Petrostructural Features of Metaconglomerate in Igarra and Otuo, South-Western Nigeria. Asian Journal of Earth Sciences, 10, 33-43. https://doi.org/10.3923/ajes.2017.33.43.

      [9] Alaku, I. O., Moshood, O. I., Agbor, A. T. and Amos, A. A. 2017. Geochemical Characteristic and Petrogenesis of Malumfashi Schist around Tandama Area, North-Western Nigeria. British Journal of Applied Science & Technology 20(1): 1-14, 2017. https://doi.org/10.9734/BJAST/2017/30116.

      [10] Ananaba, S. E., Ajakaye, D. E., 1987. Evidence of tectonic control of mineralization in Nigeria from lineament density analysis. A Landsat study. Intl. Journal of Remote Sensing 10, 1445–1452. https://doi.org/10.1080/01431168708954788.

      [11] Annor, A. E. (1995): U-Pb zircon age for Kabba-Okene granodiorite gneiss: implications for Nigeria‟s basement chronology. Africa Geoscience Review, 2: pp. 101-105.

      [12] Annor, A. E. (1998): Structural and chronological relationship between the low grade Igarra schist and its adjoining Okene migmatite-gneiss terrain in the Precambrian exposure of southwestern Nigeria. Journal of Mining and Geology, 34: PP. 187–196.

      [13] Azevedo, M. R. and Nolan, J. (1998). Hercynian late-post-tectonic granitic rocks from the Fornos de Algodres area (North Central Portugal). Lithos 44, 1-20. https://doi.org/10.1016/S0024-4937(98)00019-X.

      [14] Baginski, B., Duchesne, J., Martin, H. and Wiszniewska, J., (2007). Isotopic and geochemical constraints on the evolution of the Mazury granitoids, NE Poland. AM Monogragh No. 1, pp. 11 30.

      [15] Batchelor, R. A, Bowden, P. (1985): Petrogenetic interpretation of granitoid rock series using multicationic parameters. Journal of Chemical Geology 48: pp. 43–55 https://doi.org/10.1016/0009-2541(85)90034-8.

      [16] Boynton W.V. 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: Henderson P. (Ed.). Rare Earth element geochemistry. Amsterdam: Elsevier. p. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.

      [17] El-Bouseily, A.M. and El-Sokkary A.A (1975): The relationship between Rb,Sr and Ba in granitic rocks. Journal Of chemical geology 16: pp. 207-219 https://doi.org/10.1016/0009-2541(75)90029-7.

      [18] Bruguier, O., Dada. S.; and Lancelot, J.R (1994): Early Archaean component ( >3.5 Ga) within a 3.05 Ga orthogneiss from northern Nigeria: U-Pb zircon evidence. Earth Planet. Sci. Lett. 125, pp 89-103. https://doi.org/10.1016/0012-821X(94)90208-9.

      [19] Caby, R. (1989). Precambrian terranes of the Benin-Nigeria and Northeast Brazil and the late Proterozoic SouthAtlantic fit. Geological Society of America Special Paper, 230: pp. 145-158. https://doi.org/10.1130/SPE230-p145.

      [20] Caby, R. and Boesse, M. (2001): Pan African nappe system in southwest Nigeria: the Ife -Ilesha schist belt. Journal of African Earth Sciences, 33: pp. 211–225. https://doi.org/10.1016/S0899-5362(01)80060-9.

      [21] Chappell, B.W and White, A.J.R. (1992): I- and S-type granites in the Lachlan Fold Belt. Journal of Earth Science 83: pp. 1-26. https://doi.org/10.1130/SPE272-p1.

      [22] Chappell B. W. and Stephens W. E. (1974). Origin of infracrustal (I-type) granite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 71-86. https://doi.org/10.1017/S0263593300014139.

      [23] Chappell B. W. Bryant, C. J., Wyborn, D., White A. J. R and Williams I. S. 1998. High- and low-temperature I-type granites. Resource Geology 48, 225-226. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x.

      [24] Cocherie, A. 1986. Systematic Use of Trace Element Distribution on Patterns in Log-Log Diagrams for Plutonic Suites. Geochimica et Cosmoshimica Acta, 50, 2517-2522. https://doi.org/10.1016/0016-7037(86)90034-7.

      [25] Cooray, P., 1974. Some aspect of the Precambrian of Nigeria: A review. Jour. of Min.and Geol Nig. 8(1), 17-43.

      [26] Cox, K. G., Bell, J. D., Pankhurst, R. J., (1979). The interpretation of igneous rocks, George, Allen and Unwin, London. https://doi.org/10.1007/978-94-017-3373-1.

      [27] Cullers R. L., Podkovyrov V. L., (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, Southeastern Russia. Precambrian Research. 117(3):157–183. https://doi.org/10.1016/S0301-9268(02)00079-7.

      [28] Dada, S. S. 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: of current interpretations. Precambrian Research 87, 65-74. https://doi.org/10.1016/S0301-9268(97)00054-5.

      [29] Dada, S.S., Lancelot, J.R., Briqueu, L., 1989. Age and origin of the annular charnockitic complex at Toro, Northern Nigeria: U--Pb and RbSr evidence. Journal of African Earth Sciences, 9, pp. 227-234. https://doi.org/10.1016/0899-5362(89)90066-3.

      [30] Dada, S. S., Birck, J. L., Lancelot, J. R. and Rahaman, M. A. (1993): Archean migmatite-gnesis complex of North Central Nigeria: its geochemistry, petrogenesis and crustal evolution. In: 16th International Colloquium on African Geology, Mbabane, Swaziland, Extended Abstracts, 1: pp. 97–102.

      [31] Dall‟Agnol, R., Ramo¨, O.T., Magalhaes, M.S., and Macambira, M.J.B., (1999): Petrology of the anorogenic oxidised Jamon and Musa granites, Amazonian craton: implications for the genesis of Proterozoic A-type granites. Lithos 46: pp. 431– 462 https://doi.org/10.1016/S0024-4937(98)00077-2.

      [32] Danbatta, U. A. 1999. Geotectonic evolution of the Kazaure schist belt in the Precambrian Basement of NW Nigeria. Unpublish. Ph.D. Thesis, Ahmadu Bello University, Zaria.19-42.

      [33] Danbatta. U. A. 2002. Rb-Sr Isochron Dating of Granitoids from the Kazaure Schist Belt, NW Nigeria. Global Journal of Pure and Applied Sciences 8 (3). 319-322 https://doi.org/10.4314/gjpas.v8i3.16015.

      [34] Danbatta, U.A. (2008): A Review of the Evolution and Tectonic Framework of the Schist Belts of Western Nigeria, West Africa. Africa geoscience review15 (2): pp. 145-158.

      [35] Danbatta. U. A. 2010. On the evolution of Kazaure Schist Belt of NW Nigeria. Global Journal of Geological Sciences 8 (2). 207-216 https://doi.org/10.4314/gjgs.v8i2.62775.

      [36] Ekwueme, B. N., 1987. Structural orientation and Precambrian deformational episode of Uwet area, Oban Massif, S.E. Nigeria. Precambrian Research, 34, pp. 269- 289. https://doi.org/10.1016/0301-9268(87)90004-0.

      [37] Ekwueme, B. N., and Kroner, A., 1994. The nature of the Archean crust in Nigeria: a new discovery. United State Geological Survey Circular, 1107.

      [38] Ekwueme, B.N. and Kroner, A., 1998. Single zircon evaporation ages from the Oban Massif, southeastern Nigeria. Journal of African Earth Sciences, 26, 195 - 205. https://doi.org/10.1016/S0899-5362(98)00005-0.

      [39] Ekwueme, B. N. & Shing, R., (1987). Occurrence, Geochemistry and Geochronology of mafic-Ultramafic rock in the Obudu Plateau S.E. Nigeria in Srivasta R.K. and Chadta, R. (eds) Magmatism relation to diverse tectonic settings.

      [40] El Bouseily, A. M and El-Sokkary, A. A., 1975. The relationship between Rb, Sr and Ba in granitic rocks. Chemical Geology. 16, 174-189. https://doi.org/10.1016/0009-2541(75)90029-7.

      [41] Elueze, A. A. (1981). Dynamic metamorphism and oxidation of amphibolites of Tegina Area, North-western Nigeria. Precambrian Research. 14(3):379-388. https://doi.org/10.1016/0301-9268(81)90046-2.

      [42] Elueze, A. A. and Okunlola, O. A. 2003. Geochemical features and petrogenetic affinity of Precambrian amphibolites of Burum area Central Nigeria. Nigerian Journal of Mining and Geology, 39(2), 7 pp. 1-78. https://doi.org/10.4314/jmg.v39i2.18794.

      [43] Engel, A.E.J., Engel, C.G. and Havens, R.G. 1965. Chemical characteristics of oceanic basalts and the upper mantle. Geol. Soc. Am. Bull. 76, pp. 719-734. https://doi.org/10.1130/0016-7606(1965)76[719:CCOOBA]2.0.CO;2.

      [44] Ejimofor, O. C., Umeji, A. C. and Turaki, U. M. 1996. Petrography and major element geochemistry of the basement rocks of northern Obudu area, eastern Nigeria. Journ. Min. Geol., 32, pp. 1-9.

      [45] Ezepue, M. C and Odigi, M. I., 1993. Petrology and geochemistry of monzodiorite, granodiorite and granites from the Precambrian terrain between Kabba and Lokoja, SW Nig. Jour. Min. Geol; 30, (1): 1-9.

      [46] Falconer, J. D. 1911. The Geology and Geography of Northern Nigeria. Macmillian, London.

      [47] Ferre, E. C., Caby, R., Peucat, J. J., Capdevila, I. R., and Monie, P., 1998. Pan-African post-collisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, 45, pp. 255 278. https://doi.org/10.1016/S0024-4937(98)00035-8.

      [48] Flagler, P. A., Spray, J. G., 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19, 70-73. https://doi.org/10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2.

      [49] Fitches, W. R., Ajibade A. C., Egbuniwe I. G., Holt R. W., and Wright J.B. (1985): Late Proterozoic Schist Belts and Plutonism in NW Nigeria‟, Geological Society of London, 142: pp. 319- 337. https://doi.org/10.1144/gsjgs.142.2.0319.

      [50] Frost, C. D., Frost. B. R., Chamberlain, K. R., & Edwards, B. R. (1999). Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming: a reduced rapakivi-type anorogenic granite. Journal of Petrology, 40, 1771-1802. https://doi.org/10.1093/petroj/40.12.1771.

      [51] Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033.

      [52] Ferre, E.C, Deleris, J, Bouchez, J.L, Lar, A.U., and Peucat, J.J (1996): The Pan-African Reactivation of Eburnean and Archaen Provinces in Nigeria: Structural and Isotopic Data. In: Journal of the Geological Society, London, 153: pp. 719-728. https://doi.org/10.1144/gsjgs.153.5.0719.

      [53] Ferre, E. C., Caby, R., Peucat, J. J., Capdevila, I. R., & Monie, P. (1998). Pan-African post-collisional ferro-potassic granite and quartz-monzonite plutons https://doi.org/10.1016/S0024-4937(98)00035-8.

      [54] Garba, I. 2002. Late Pan-African tectonics and origin of Gold mineralization and Rare-metal pegmatites in the Kushaka schist belt, northwestern Nigeria. Journal of Mining and Geology. 38, 1, 1-12. https://doi.org/10.4314/jmg.v38i1.18768.

      [55] Glikson, A.Y. 1971. Primitive Archaen element distribution patterns: chemical evidence and geotectonic significance. Earth Planet. Sci. Lett. 12, pp. 309-320. https://doi.org/10.1016/0012-821X(71)90215-9.

      [56] Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., Key, R. M. and Garba, A. 2014. Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the ‘pegmatite conundrum’. Lithos 200, 22-34 https://doi.org/10.1016/j.lithos.2014.04.006.

      [57] Grant, N.K. (1970): Geochronology of Precambrian Basement Rocks from Ibadan, southwestern Nigeria. Earth and Planetary Science Letters 10: pp. 29-38 https://doi.org/10.1016/0012-821X(70)90061-0.

      [58] Grant, N. K. Hickman, M., Burkholder, F. R. and Powell, J. L. 1972. Kibaran Metamorphic Belt in the Pan-African Domain of W. Africa. Nature (London). 134, 343-349.

      [59] Grant, N. K. 1978. Structural distinction between metasedimentary cover and an underlying basement in the 600 m.y. old Pan-African domain of Northwestern Nigeria, West African. Geological Society America Bulletin 89, 50-58. https://doi.org/10.1130/0016-7606(1978)89<50:SDBAMC>2.0.CO;2.

      [60] Gray, C. M. 1984. An isotopic mixing model for the origin of granitic rocks in southern Australia Earth and Planetary Science Letters 70, 47-60. https://doi.org/10.1016/0012-821X(84)90208-5.

      [61] Grigoriev, S. I. and Pshenichny, C. A., 1998. Late Mesozoic post-collisional intermediate to silicic magmatism in the Badjal area, far east of Russia. Lithos 45, 457-468. https://doi.org/10.1016/S0024-4937(98)00044-9.

      [62] GuimarÄes, I. P., Da Silva Filho, A. F., Almeida, C. N,. Van – Schmus, W. R. Araújo, J. M. M. Melo, S. C. Melo, E. B. 2004. Precambrian Research, 135, 23–53 https://doi.org/10.1016/j.precamres.2004.07.004.

      [63] Hallberg, J.A. 1972. Geochemistry of Archaen volcanic belts in the Eastern Goldfields region of Western Australia. J. Petrol., 13, 45-66. https://doi.org/10.1093/petrology/13.1.45.

      [64] Hassanen M.A., El-nisr S.A., and Mohamed F.H (1996): Geocheinistry and petrogenesis of Pan-African I-type granitoids at Gabal Igla Ahmar, Eastern Desert, Egypt Journal of African Earth Science 22,( 1): pp. 29-42 https://doi.org/10.1016/0899-5362(95)00122-0.

      [65] Irvine, T. N., and Baragar, W. R. A. 1971. A Guide to the Chemical Classification of Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8, (5), 523-548. doi:10.1139/e71-055 https://doi.org/10.1139/e71-055.

      [66] Jahn, B. M. Wu, F. Lo C. H. and TsaI, C. H. 1999. Crust-Mantle Ä°nteraction Ä°nduced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Ä°sotopic Evidence from Post-Collisional Mafic-Ultramafic Ä°ntru- sions of the Northern Dabie Complex, Central China. Chemical Geology. Vol. 157, No. 1, pp. 119-146. https://doi.org/10.1016/S0009-2541(98)00197-1.

      [67] Jensen, L. S. (1976). A new cation plot for classifying subalkalic volcanic rocks. Ont. Div. Mines Misc. Paper 66: 1-22.

      [68] Karacik, Z., Yilmaz, Y., Pearce, J. A. and Ece, O. I., 2008. Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey. International Journal of Earth Sciences (Geol Rundsch), 97, pp. 1191-1200. https://doi.org/10.1007/s00531-007-0222-y.

      [69] Kröner, A., Ekwueme, B.N. and Pidgeon, R.T. (2001): The Oldest Rocks in West Africa: SHRIMP Zircon Age for Early Achean Migmatitic Orthogneiss at Kaduna, Northern Nigeria. Journal of Geology, university of Chicago, 19: pp. 399-406. https://doi.org/10.1086/319979.

      [70] Lissan, H. N., Bakheit, A. K.., 2011. Geochemistry and geotectonic setting of Neoproterozoic Granitoids from Artoli Area, Berber Province Northern Sudan. Journal of Applied Sciences. 11 (5), 752-767. https://doi.org/10.3923/jas.2011.752.767.

      [71] Long, L. E., Castellana, C.H., and Sial, A. N. 2005. Age, Origin and Cooling History of the Coronel Joao Sa Pluton, Bahia, Brazil. Journal of Petrology 45, 255-273. https://doi.org/10.1093/petrology/egh070.

      [72] Machado, A. Lima, E. F. Chemale, F. J. 2005. Geoche- mistry Constraints of Mesozoic-Cenozoic Calc-Alkaline Magmatism in the South Shetland Arc, Antarctica. Journal of South American Earth Sciences. Vol. 18, No. 3-4, pp. 407-425. https://doi.org/10.1016/j.jsames.2004.11.011.

      [73] Maniar, P. D. and Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101, pp. 635 -643.Manson, V. 1967. Geochemistry of basaltic rocks: major elements. In: Hess H.H. and Poldervaart, A. (eds.) Basalts 2 Interscience New York, pp. 15-39. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.

      [74] McCurry, P. 1976. The geology of the Precambrian to Lower Palaeozoic of northern Nigeria- a review. In: Geology of Nigeria. C.A. Kogbe (Ed). Elizabethan Publishing Company. Lagos, 15-39

      [75] Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, 207-218. https://doi.org/10.1016/0009-2541(86)90004-5.

      [76] Middlemost E.A.K. 1985 Magmas and magmatic rocks: an introduction to igneous petrology. London/New York, Longman, 266 p.

      [77] Miyashiro A (1978). Nature of alkalic volcanic rock series. Contrib. Mineral Petrol. 66: 91–104. https://doi.org/10.1007/BF00376089.

      [78] Mucke, 2005. The Nigerian manganese-rich iron-formations and their host rocks - from sedimentation to metamorphism. Journal of African Earth Sciences. 41, 407 – 436. https://doi.org/10.1016/j.jafrearsci.2005.07.003.

      [79] Mullan, H. S. (1979): Structural distinction between a metasedimentary cover and an under lying basement in the 600 m.y. old Pan African domain of northwestern Nigeria, West Africa: discussion. Geological Society of America Bulletin 90: pp. 983–984 https://doi.org/10.1130/0016-7606(1979)90<983:SDBAMC>2.0.CO;2.

      [80] Mullen, E. D., 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planetary Science Lettwrs Vol. 62, (1), 53-62 https://doi.org/10.1016/0012-821X(83)90070-5.

      [81] Naqvi, S. M., and hussain, S. M. 1973. Geochemistry of Dhawar Metavolcanics and composition of the primeval crust of the peninsular India. Geochim. Cosmochim. Acta 37, pp. 159-164. https://doi.org/10.1016/0016-7037(73)90254-8.

      [82] Obiora, S. C., 2006. Petrology and Geotectonic Setting of B asement Complex Rocks around Ogoja, Southeastern Nigeria. Ghana Journal of Science, 46, pp. 13 - 25. https://doi.org/10.4314/gjs.v46i1.15912.

      [83] Obiora, S. C. (2012): Chemical characterization and tectonic evolution of hornblende-biotite granitoids from the Precambrian Basement Complex around Itowanye and Katsina-Ala, southeastern Nigeria. Journal of Mining and Geology Vol. 48(1): pp. 13-29.

      [84] O‟Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological Survey, Professional Papers 52(5): pp. 79-84.

      [85] Odeyemi, I. B (1977): The basement rocks of Bendel state of Nigeria. Unpublished Ph. D. Thesis. University of Ibadan.

      [86] Okunlola, O. A. (2001): Geological and Compositional Investigation of Precambrian Marble Bodies and associated Rocks in the Burum and Jakura areas, Nigeria. Ph.d Thesis, University of Ibadan, Nigeria, 193p.

      [87] Okunlola and Okoroafor, (2009).: Geochemical and petrogenetic features of schistose rocks of the Okemesi fold belt, Southwestern Nigeria RMZ – Materials and Geoenvironment, Vol. 56, No. 2, pp. 148-162, 148

      [88] Okonkwo, C. T. and Winchester, J. A. 1996. Geochemistry and geotectonic setting of Precambrian amphibolites and granitic gneisses in the Jebba area, Southwestern Nigeria. J. Min. Geol. 32(1), pp. 1-18

      [89] Okonkwo, C. T. and Winchester, J. A., 2004. Geochemistry of granitic rocks in Jebba area, southwestern Nigeria. Journal of Mining and Geology, Vol. 40(2), pp. 95 - 100. https://doi.org/10.4314/jmg.v40i2.18814.

      [90] Olade, M. A. and Elueze, A. A. 1979. Petrology and geochemistry of the Ilesha amphibolites and Precambrian crustal evolution in the Pan-African domain of south-western Nigeria. Precam. Res. 8, pp. 303-318. https://doi.org/10.1016/0301-9268(79)90033-0.

      [91] Olobaniyi, S. O. (2003) Geochemistry of semi politic schist of Isanlu area, Southwestern Nigeria: Implication for the geodynamic evolution of the Egbe-Isanlu Schist belt. Global Journal of Geological Sciences; Vol. 1, No. 2, pp. 113–127. https://doi.org/10.4314/gjgs.v1i2.18661.

      [92] Ogezi, A.E.O. (1977): Geochemistry and geochronology of basement rocks north-western Nigeria. Unpublished Ph.D. Thesis, Leeds University United Kingdom pp. 200-207

      [93] Oluyede, O. K., Garba, I., Danbatta, U., Ogunleye, P. and Klötzli, U. (2021a). Field occurrence, petrography and structural characteristics of basement rocks of the northern part of Kushaka and Birnin Gwari schist belts, northwestern Nigeria. Journal of Natural Sciences Research. Vol. 12 No. 12 ISSN (Paper) 2224-3186 (Online) 2225-0921 https://doi.org/10.7176/JNSR.

      [94] Oluyede, O. K., Garba, I., Danbatta, U., Ogunleye, P. and Klötzli, U. (2021b). Geochemistry and petrogenesis of banded and granitic gneisses of the northern part of Kushaka schist belts northwestern Nigeria. Journal of Environmental and Earth Science. ISSN (Paper) 2224-3216 (Online) 2225-0948 https://doi.org/10.7176/JEES.

      [95] Olarewaju, V. O. and Rahaman, M. A., 1982. Petrology and Geochemistry of Older Granites from some parts of Northern Nigeria. Journal of Mining and Geology, 18(2), pp. 16-28.

      [96] Pearce, J. A. and Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters. 19, 290-300 https://doi.org/10.1016/0012-821X(73)90129-5.

      [97] Pearce, J. A. and Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 33-47 https://doi.org/10.1007/BF00375192.

      [98] Pearce, J. A. Harris, N. B. W. and Tindle, A. G. W. 1984. Trace Element Discrimination Diagrams for the Tectonic Ä°nterpretation of Granitic Rocks. Journal of Petrology, 25, (4), 956-983. https://doi.org/10.1093/petrology/25.4.956.

      [99] Pearce, J. A. Bender, J. F. De Long, S. E. Kidd, W. S. F. Low, P. J. Güner, Y. Şaroğlu, F. (1990). Genesis of Collision Volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research. Vol. 44, No. 1-2, pp. 189-229. https://doi.org/10.1016/0377-0273(90)90018-B.

      [100] Pitcher, W. S. (1983). Granite type and tectonic environment. In K. Hsu (Ed.), Mountain Building Processes (pp. 19-40). London: Academic Press.

      [101] Peccerillo, A., and Taylor, S. R. (1976): Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: pp. 63-81. https://doi.org/10.1007/BF00384745.

      [102] Prinz, M. (1967). Geochemistry of basaltic rocks: trace elements. In: Hess HH Poldervaart A. (Eds.) Basalts 2 Interscience New York, 271-325.

      [103] Rahaman, M. A. 1976. Review of the basement geology of southwestern Nigeria. In: Geology of Nigeria. (Edited by C. A. Kogbe). Elizabethan Publishing Company Lagos, 41-58

      [104] Rahaman, M. A. 1988. Recent advances in the study of the basement complex of Nigeria. In: Precambrian Geology of Nigeria. (Eds. Oluyide et al.) a publication of the Geol. Surv. Nigeria. 71-43.

      [105] Rahaman, M. A., Emofurieta, W. O. and Caen-Vachette, M., 1983. The potassic of Igbeti area: Further evidence of the polycyclic evolution of the Pan-African belt southwestern Nigeria. Precambrian Research, 22, pp. 75 -92. https://doi.org/10.1016/0301-9268(83)90059-1.

      [106] Roberts, M. P. and Clemens J. D. 1993. The origin of high-potassium calc-alkaline I-type granitoids. Geology 21, 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2.

      [107] Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Hérail G. (2006). Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology. 226 (1) 31-65. https://doi.org/10.1016/j.chemgeo.2005.08.010.

      [108] Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation and Interpretation. Longman Group, Uk Ltd. Co-published in the United States with John Wiley and Sons, New York, 352.

      [109] Rottura, A., Bargossi, G. M., Caggianeli, A., Del Moro, A., Visona, D. and Tranne, C. A. 1998. Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos 45, (1-4) 329-348. https://doi.org/10.1016/S0024-4937(98)00038-3.

      [110] Schluter, T., 2005. Geological Atlas of Africa: With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards, Geosites and Geoscientific Education of Each Country. 2nd Edition. Springer, 272p.

      [111] Soesoo, A. 2000. Fractional Crystallization ofmantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. Journal of Geological Society, London 157, 135-149. https://doi.org/10.1144/jgs.157.1.135.

      [112] Streckeisen, A., (1976). To each plutonic rock its proper name. Earth Science Review 6: 181-217.

      [113] Sun, L. M. and Chen, J. C. (1992) Geochemical study of granites from Chimen (Quemoy) and Hong Kong, Southeastern China. Journal of Southeast Asian Earth Sciences 7, (4), 237-245. https://doi.org/10.1016/0743-9547(92)90003-T.

      [114] Sun S. S. and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.). Magmatism in the ocean basins. Geological Society of London, Special Publication, 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

      [115] Tarney J. & Jones C.E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, 151(5):855-868. https://doi.org/10.1144/gsjgs.151.5.0855.

      [116] Truswell, J. F. and Cope, R. N. 1963. The geology of parts of Niger and Zaria Provinces, Northern Nigeria. Bulletin Geological Survey Nigerian 29, 38.

      [117] Tubosun, I. A., Lancelot, J. R., Rahaman, M. A., Ocan, O., 1984. U–Pb Pan-African ages of two charnockite-granite association from southwestern Nigeria. Contribution to Mineralogy and Petrology 88, 188–195. https://doi.org/10.1007/BF00371422.

      [118] Turner, D. C. 1983: Upper Proterozoic schist belts in the Nigerian sector of the Pan African Province of West Africa. Precambrian Research 21, 5-79. https://doi.org/10.1016/0301-9268(83)90005-0.

      [119] Ukwang, E., and Ekwueme, B. N. (2009): Geochemistry and geotectonic study of granitic rocks of southwest Obudu Plateau, southeastern Nigeria. Journal of Mining and Geology, 45: pp. 73-82.

      [120] Van Breemen, O., Pidgeon, R. T. and Bowden, P. 1977. Age and isotopic studies of some Pan-African granite from North-central Nigeria. Precambrian Research 4, 319-407. https://doi.org/10.1016/0301-9268(77)90001-8.

      [121] Whalen J. B., Currie K. L. and Chappell B. W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions Mineralogy Petrology 95: 407-419. https://doi.org/10.1007/BF00402202.

      [122] White, A. J. R., (2001) Water, Restite and Granite Mineralization. Australian Journal of Earth Sciences, 48, 551-555. https://doi.org/10.1046/j.1440-0952.2001.00878.x.

      [123] Woakes. M. Rahaman, M. A. & Ajibade. A. C. 1987. Some metallogenic features of the Nigerian basement. Journal of African Earth Sciences, 6, 655-664. https://doi.org/10.1016/0899-5362(87)90004-2.

      [124] Wright, J. B., 1985. Fracture systems in Nigeria and initiation of fracture zones in the South Atlantic. Tectonophysics, 34, 43-47. https://doi.org/10.1016/0040-1951(76)90093-7.

      [125] Zorano S. S; Martin H., Jean-jacques P; Emanuel F. J. and Maria H. F. M. (2007): Calc-Alkaline Magmatism at the Archean-Proterozoic Transition: the Caico Basement Complex (NE Brazil) Journal of Petrology 48 (11): pp. 2149-2185. https://doi.org/10.1093/petrology/egm055.

  • Downloads

    Additional Files

  • How to Cite

    Oluyede, K., Garba, I., Danbatta, U., Ogunleye, P., & Klötzli, U. (2021). Petrography and geochemistry of the granitoids and associated volcanic rocks of the northern part of Kushaka and Birnin Gwari schist belts, NW Nigeria: implications for provenance and geological setting. International Journal of Advanced Geosciences, 9(2), 42-64. https://doi.org/10.14419/ijag.v9i2.31269