Behavior of the clinopyroxenes trace elements in spinel-lherzolite xenoliths from Liri (Kapsiki plateau, Cameroon line)

  • Authors

    • Nguihdama Dagwai UNIVERSITY OF NGAOUNDERE, Cameroon
    • Kamgang Pierre UNIVERSITY OF mAROUA
    • Mbowou Gbambié Isaac Bertrand UNIVERSITY OF YAOUNDE 1
    • Chazot Gilles UNIVERSITY OF NGAOUNDERE
    • Ngounouno Ismaïla UNIVERSITY OF BRETAGNE
    2020-11-10
    https://doi.org/10.14419/ijag.v8i2.31130
  • Spinel-Lherzolite Xenoliths, Clinopyroxene, Cryptic Metasomatism, Liri, Cameroon Line.
  • Spinel-lherzolite xenoliths trapped within the alkali basalts flow in the Liri region (Kapsiki Plateau) have a protogranular texture and consist of olivine, orthopyroxene, clinopyroxene and spinel crystals. These xenoliths are residues of partial melting of the primitive mantle, with the low titanium content in clinopyroxene crystals (TiO2 < 0.5 wt.%). The clinopyroxene of the spinel-lherzolite xenoliths from Liri, are divided into two distinct groups according to their trace element characteristics. The variations in the rare earths elements make it possible to classify the different clynopyroxenes in two groups: the first group consisting of the samples of Liri (Liri 1, Liri 02, Liri 3, Liri 05 and Liri 5) rich in light rare earths elements (LREEs), with ratios (Ce/Yb)N normalized which vary between 3.00 and 7.78. It is probably a cryptic metasomatism due to the absence of hydrated minerals (such as amphibole) which caused these enrichments. The second group comprises samples of Liri (Liri 01, Liri 2, Liri 04, Liri 4) depleted in light rare earths elements, with the ratio in (Ce/Yb) N < 1.2. This depletion in rare earths elements results from the extraction of the melting liquid.

     

     

     

     


  • References

    1. [1] Ngounouno, I., Dagwaï, N., Kamgang, P. and Deruelle, B. (2008) Petrology of Spinel Lherzolite Xenoliths in Alkali Basalts from Liri, South of the Kapsiki Plateau (Northernmost Cameroon Hot Line). Journal of Cameroon Academy of Science, 8, 31-42.

      [2] Dal Negro, A., Carbonin, S., Domeneghetti, C., Molin, G.M., Cundari, A.and Piccirillo, E.M. (1984) Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia. Contrib Mineral Petrol 86: 221±229 https://doi.org/10.1007/BF00373667.

      [3] Cundari, A., Dal Negro, A., Piccirillo, E.M., Della Giusta, A. and Secco, L. (1986) Intracrystalline relationships in olivine, pyroxenes and spinel from a suite of spinel lherzolite xenoliths from Mt. Noorat, Victoria, Australia. Contrib. Mineral. Petrol. 94, 523-532 https://doi.org/10.1007/BF00376343.

      [4] Ngounouno, I., Déruelle, B. and Demaiffe, D. (2000) Petrology of the bimodal Cenozoic volcanism of the Kapsiki plateau (northern most Cameroun, central Africa), J. Volcanol. Geotherm. Res. 102, 21–44. https://doi.org/10.1016/S0377-0273(00)00180-3.

      [5] Dunlop, H.M. (1983) Strontium isotope geochemistry and potassium-argon studies on volcanic rocks from the Cameroon line, West Africa. PhD thesis, Univ. Edingburgh, 347 pp

      [6] Vincent, P.M. and Armstrong, R.L. (1973) Volcanism of the Kapsiki Plateau (North Cameroon) and the underlying sedimentary formations. Coll. African Geol., Florence, abst., unpubl.

      [7] Tamen, J., 1998. Contribution à l’étude géologique du plateau Kapsiki (Extrême-Nord, Cameroun): Volcanologie, Pétrologie et Géochimie. Thèse Doct. 3ème cycle, Université de Yaoundé 1, 127pp.

      [8] Ngounouno I (1993) Pétrologie du magmatisme cénozoïque de la vallée de la Bénoué et du plateau Kapsiki (nord du Cameroun). Thèse Doct. Université Pierre et Marie Curie, Paris, pp 1–280

      [9] Ngounouno, I. and Déruelle, B. (2007) Petrology of wehrlites and clinopyroxenites xenoliths from Mount Cameroon: Evidence of mantle metasomatism. Journal of Cameroon Academy of Science, 7, 35-46.

      [10] Anders, E. and Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53,197-214. https://doi.org/10.1016/0016-7037(89)90286-X.

      [11] Norman, M. (2001) Application of laser-ablation ICPMS to the trace element geochemistry of basaltic magmas and mantle evolution. Inn Min Assoc. Can. Short Course series (ed. P. Sylvester) Ottawa, 29, 163-184.

      [12] Grégoire, B.N., Moine, S.Y., O’Reilly, J.-Y., Cottin, A. and Giret, 2000. Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate and carbonate rich melts (Kerguelen Islands, Indian Ocean), J. Petrol., 41, 477–509. https://doi.org/10.1093/petrology/41.4.477.

      [13] Yaxley, G.M., Crawford, A.J. and Green, D.H. (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia, Earth Planet. Sci. Lett., 107, 305-317. https://doi.org/10.1016/0012-821X(91)90078-V.

  • Downloads

  • How to Cite

    Dagwai, N., Pierre, K., Gbambié Isaac Bertrand, M., Gilles, C., & Ismaïla, N. (2020). Behavior of the clinopyroxenes trace elements in spinel-lherzolite xenoliths from Liri (Kapsiki plateau, Cameroon line). International Journal of Advanced Geosciences, 8(2), 259-262. https://doi.org/10.14419/ijag.v8i2.31130