Insight into geochemistry of basaltic rocks from Mt Cameroon and characterization of the mantle source

  • Authors

    • Fadimatou Ngounouno Yamgouot UNIVERSITY OF NGAOUNDERE, Cameroon
    • Isaac Bertrand Gbambie Mbowou UNIVERSITY OF NGAOUNDERE, Cameroon
    • Ismaïla Ngounouno UNIVERSITY OF NGAOUNDERE, Cameroon
    • Azizi Abdoul Youpoungam UNIVERSITY OF NGAOUNDERE, Cameroon
    • Isaac Daama UNIVERSITY OF NGAOUNDERE, Cameroon
    • Bernard Déruelle Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris cédex 05, France
    2018-06-27
    https://doi.org/10.14419/ijag.v6i1.10738
  • Mt Cameroon, Basalt, Xenocryst, Subcontinental, Mantle, Alkaline.
  • Alkaline volcanic activities occurred in the Mt Cameroon at the ocean-continent boundary of the Cameroon Line. It is characterized by a volcanic association of alkali basalts and hawaiites extruded during the late Miocene to Recent times. The major and trace element geochemistry of the Mt Cameroon are consistent with the fractional crystallization of olivine ± clinopyroxene ± plagioclase (± amphibole). Petrographical and mineralogical study reveals the presence of xenocryts (olivine, clinopyroxene and spinel) in Mt Cameroon basalts. Their composition are similar to xenoliths and rocks crystals and they come from cumulates formed in the upper lithospheric mantle. Mt Cameroon magmas were generated near the boundary of garnet and spinel mantle stability domains (60–75 km depth), at the base of the lithospheric mantle that the compositions of the Mt Cameroon magmas are consistent with derivation from a infralithospheric mantle that was metasomatised by carbonatite melts. Basaltic volcanism in the Mt Cameroon occurred probably as a result of minor plume activity coupled with lithospheric extension.

     

     

  • References

    1. [1] Ashwal LD, Demaiffe D, Torsvik TH (2002) Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type arc origin. J. Petrol. 43, 45–73. https://doi.org/10.1093/petrology/43.1.45.

      [2] Barnes SJ (1986). The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib. Mineral. Petrol. 93,524–531 https://doi.org/10.1007/BF00371722.

      [3] Bultitude RJ, Green DH (1971) Experimental study of crystal-liquid relationships at high pressures in olivine nephelinite and basanite compositions. J Petrol 12,121–147 https://doi.org/10.1093/petrology/12.1.121.

      [4] Bonatti E, Harrisson CGA (1976) Hot lines in the Earth’s mantle. Nature 263, 402-404. https://doi.org/10.1038/263402a0.

      [5] Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses, of trace elements in geological samples using flow injection and low pressure on line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletters 25, 187–198. https://doi.org/10.1111/j.1751-908X.2001.tb00595.x.

      [6] Chauvel C, Hofmann AW, Vidal P (1992) HIMU–EM: the French Polynesian connection, Earth Planet. Sci. Lett. 110, 99–119. https://doi.org/10.1016/0012-821X(92)90042-T.

      [7] Cawthorn RG, Sander BK, Jones IM (1992) Evidence for the trapped liquid shift effect in the Mt Ayliff Intrusion, South Africa. Contrib. Mineral. Petrol. 111,194–202 https://doi.org/10.1007/BF00348951.

      [8] Déruelle B, N’ni J, Kambou R (1987) Mt Cameroon: an active volcano of the Cameroon Line. J. Afr. Earth Sci. 6, 197– 214.

      [9] Déruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom E, Njongfang J, Ghogomu RT, Nono A (1991) The Cameroon Line: a review, in: A.B. Kampunzu, R.T. Lubala (Eds.), Magmatism in Extensional Structural Settings. The Phanerozoic African Plate, Springer-Verlag, Berlin, pp. 274–327. https://doi.org/10.1007/978-3-642-73966-8_12.

      [10] Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51,431-5. https://doi.org/10.1180/minmag.1987.051.361.10.

      [11] Ézangono J, Déruelle B, Ménard JJ, (1995) Benmoreites from Tchabal Djinga volcano (Adamawa, Cameroon), products of kaersutite + plagioclase assimilation by a trachytic magma. Terra. Abst. Suppl. Terra Nova 7: 161.

      [12] Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of fertile and depleted peridotite from 2 to 30 kbar and application to basalt petrogenesis: J. Petrol. 29, 257–282. https://doi.org/10.1093/petrology/29.6.1257.

      [13] Foley SF, Taylor WR, Green DH (1986) the role of fluorine and oxygen fugacity in the genesis of the ultra-potassic rocks. Contrib. Mineral. Petrol. 94, 183-192. https://doi.org/10.1007/BF00592935.

      [14] Foley SF, Jackson SE, Fryer BJ, Greenough JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from New found land by LAM-ICP-MS. Geochim. Cosmochim. Acta 60 629-63. https://doi.org/10.1016/0016-7037(95)00422-X.

      [15] Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophy Geosy 3:1030 https://doi.org/10.1029/2001GC000217.

      [16] Green TH (1972) Crystallization of calcalkaline andesite under controlled high-pressure hydrous conditions. Contrib. Mineral. Petrol. 34, 150-166. https://doi.org/10.1007/BF00373770.

      [17] Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis — Sedona 16 years later. Chem. Geol. 117, 1–36. https://doi.org/10.1016/0009-2541(94)90119-8.

      [18] Green DH, Ringwood AE (1967) TIle genesis of basaltic magmas. Contrib.Mineral. Petrol. 15, 103-190. https://doi.org/10.1007/BF00372052.

      [19] Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon Line volcanic chain. J. Petrol. 29, 181-211. Halliday, A.N., Davidson, J.P., Holden, P., DeWolf, C., Lee, D.C., Fitton, J.G., 1990. Trace fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. Nature 347, 523–528. https://doi.org/10.1038/347523a0.

      [20] Hofmann, A.W., Jochum, K.P., Seufert M., White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45. https://doi.org/10.1016/0012-821X(86)90038-5.

      [21] Leake, B.E., and 20 co-authors. 1997. Nomenclature of amphiboles: report of the subcommitee on amphiboles of the International Mineralogical Association commission on new minerals and mineral names. Mineral. Mag. 61, 295–321 https://doi.org/10.1180/minmag.1997.061.405.13.

      [22] Lee, D.C., Halliday, A.N., Fitton, J.G., Poli, G., 1994. Isotopic variations with distance and time in the volcanic islands of the Cameroon Line—evidence for a mantle plume origin. Earth Planet. Sci. Lett. 123, 119–138. https://doi.org/10.1016/0012-821X(94)90262-3.

      [23] Marzoli, A., Renne, P.R., Piccirillo, E.M., Francesca, C., Bellien, G., Mel, A.J., Nyobe, J.B., N’ni, J., 1999. Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundéré): 40Ar/39Ar dates, petrology, Sr−Nd−O isotopes and their petrogenetic significance. Contrib. Mineral. Petrol. 135,133–150. https://doi.org/10.1007/s004100050502.

      [24] Marzoli, A., Piccirillo, E.M., Renne, P.R., Bellieni, G., Lacumin, M., Nyobe, J.B., Tngwa, A.T., 2000. The Cameroon Volvanic Line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J. Petrol. 41, 87-109. https://doi.org/10.1093/petrology/41.1.87.

      [25] Maury, R. C., Defant, M. J., Joron, J. L., 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360, p. 661-663. https://doi.org/10.1038/360661a0.

      [26] McDonough, W., Sun, S.S., 1995. The composition of the Earth, Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.

      [27] Middlemost, E.A.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol. 77, 19-26 https://doi.org/10.1016/0009-2541(89)90011-9.

      [28] Moreau, C., Regnoult, J.M., Déruelle, B., Robineau, B., 1987. A new tectonic model for the Cameroon Line, Central Africa, Tectonophysics 139–141 317–334. https://doi.org/10.1016/0040-1951(87)90206-X.

      [29] Morimoto, N., 1989. Nomenclature of pyroxenes. Can. Mineral. 27, 143–156. https://doi.org/10.2465/minerj.14.198.

      [30] Nesbitt, R.W., Hamilton, D.L., 1970. Crystallization of an alkali olivine basalt under controlled PO2 – PH2O, conditions. Phys. Earth Planet. Inter. 3, 309-315. https://doi.org/10.1016/0031-9201(70)90067-1.

      [31] Ngounouno, I., Déruelle, B., Demaiffe, D., 2000. Petrology of the bimodal Cenozoic volcanism of the Kapsiki plateau (northern most Cameroun, central Africa), J. Volcanol. Geotherm. Res. 102, 21–44 https://doi.org/10.1016/S0377-0273(00)00180-3.

      [32] Ngounouno, I., Déruelle, B., Demaiffe, D., Montigny, R., 2003. Petrology of the Cenozoic volcanism in the Upper Benue valley, northern Cameroon (Central Africa), Contrib. Mineral. Petrol. 145, 87–106. https://doi.org/10.1007/s00410-002-0438-6.

      [33] Ngounouno, I., Déruelle, B., Montigny, R., Demaiffe, D., 2005. Petrology and geochemistry of monchiquites from Tchircotché (Garoua rift, north Cameroon, central Africa), Mineral. Petrol. 83, 167–190. https://doi.org/10.1007/s00710-004-0068-y.

      [34] Ngounouno, I., Déruelle, B., Montigny, R., Demaiffe, D., 2006. Les camptonites du mont Cameroun, Cameroun, Afrique, C. R. Geoscience 338, 537–544. https://doi.org/10.1016/j.crte.2006.03.015.

      [35] Nimis P., Ulmer P. (1998). Clinopyroxene geobarometry of magmatic rocks. Part 1: An structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol. 133,122–135. https://doi.org/10.1007/s004100050442.

      [36] Nkouathio, D.G., Ménard, J.-J., Wandji, P., Bardintzeff, J.-M., 2002. The Tombel graben (West Cameroon): a recent monogenetic volcanic field of the Cameroon Line. J. Afr. Earth Sci. 35: 285–300. https://doi.org/10.1016/S0899-5362(02)00031-3.

      [37] Nkoumbou, C., Déruelle, B., Velde, D., 1995. Petrology of Mt Etinde nephelinite series, J. Petrol. 36, 373. https://doi.org/10.1093/petrology/36.2.373.

      [38] Nono, A., Déruelle, B., Demaiffe, D., Kambou, R., 1994. Tchabal Nganha volcano in Adamawa (Cameroon): petrology of a continental alkaline lava series. J. Volcanol. Geotherm. Res. 60, 147–178. https://doi.org/10.1016/0377-0273(94)90066-3.

      [39] Pouchou, J.L., Pichoir, F., 1991. Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘‘PAP’’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum Press, New York, 31–75. https://doi.org/10.1007/978-1-4899-2617-3_4.

      [40] Poudjom, Djomani, Y.H., J.M. Nnange, M., Diament, G.J., Ebinger, J.D., Fairhead, 1995. Effective elastic thickness and crustal thickness variations in West-Central Africa inferred from gravity data. J. Geophys. Res. 100. 22047-22070. https://doi.org/10.1029/95JB01149.

      [41] Puturirka, K., Johnson, M., Kinzler, R., Longhi, J., Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopy roxene-liquid equilibria, 0±30 kbar. Contrib. Mineral. Petrol. 123, 92-108 https://doi.org/10.1007/s004100050145.

      [42] Presnall, D.C., Dixon, S.A., Dixon, J.R., O'Donnell, T.H., Brenner, N.L., Schrock, R.L., Dycus, D.W. 1978. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib. Mineral. Petrol. 66,203−220 https://doi.org/10.1007/BF00372159.

      [43] Thornton, C.P., Tuttle, O.F., 1960. Chemistry of igneous rocks--[Part] 1 I. Differentiation index. Amer. J. Sci. 258: 664–684. https://doi.org/10.2475/ajs.258.9.664.

      [44] Roeder, P.L., Emslie, R.F., 1970. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275−289. https://doi.org/10.1007/BF00371276.

      [45] Simkin, T., Smith, J.V., 1970. Minor-element distribution in olivine. J. Geol. 78, 304-325. https://doi.org/10.1086/627519.

      [46] Späth, A., Le Roex, A.P., Opiyo-Akech, N., 2001. Plume - Lithopheric interaction and origin of continental rift-related alkaline volcanism- The Chyulu Hills Volcanic Province, Southern Kenya. J. Petrol. 42, 765-787. https://doi.org/10.1093/petrology/42.4.765.

      [47] Spencer, K.J., Lindsley, D.H., 1981. A solution model for coexisting ion–titanium oxides. Amer. Mineral. 66, 1189–1201.

      [48] Stormer, C.F., 1983.The effects of recalculationon estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am. Mineral. 68, 586−594.

      [49] Sudo, A, Tatsumi Y. (1990). Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones.Geophs. Res. Lett. 17, 29-32. https://doi.org/10.1029/GL017i001p00029.

      [50] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds) Magmatism in the oceans basins. Geol Soc London Spec. Publ. 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

      [51] Temdjim, R., 2005. Contribution à la connaissance du manteau supérieur du Cameroun au travers de l'étude des enclaves ultrabasiques et basiques remontées par les volcans de Youkou (Adamaoua) et de Nyos (Ligne du Cameroun). Thèse Doct. État. Univ. Yaoundé 1, 339 pp.

      [52] Wass, S.Y. 1979. Multiple origins of clinopyroxene in alkali basaltic rocks, Lithos 12, ll5-132. https://doi.org/10.1016/0024-4937(79)90043-4.

      [53] Weaver, B.L. 1991. Trace element evidence for the origin of oceanic island basalts. Geology 19, 123–126. https://doi.org/10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2.

      [54] Wilson, M., 1989. Igneous petrogenesis. Chapman and Hall, London, 466 p. https://doi.org/10.1007/978-1-4020-6788-4.

      [55] Witt-Eickschen, G., W. Kaminskry, U, Kramm, B., Harte, 1998. The nature of young vein metasomatism in the lithosphere of the West Eifel (Germany): geochemical and isotopic constraints from composite mantle xenoliths from the Meerfelder maar. J. Petrol. 39, 155-185. https://doi.org/10.1093/petroj/39.1.155.

      [56] Yoder, H.S J., Tilley, C.E., 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3, 342-532. https://doi.org/10.1093/petrology/3.3.342.

      [57] Yokahoma, T., Aka, T.F., Kusakabe M., Nakamura, E., 2007. Plume-lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Contraints from 238U-230Th-236Ra and Sr-Nd-Pb isotope systematic, Geochim. Cosmochim.acta, doi:10.1016/j.gca.01.010.

  • Downloads

  • How to Cite

    Ngounouno Yamgouot, F., Bertrand Gbambie Mbowou, I., Ngounouno, I., Abdoul Youpoungam, A., Daama, I., & Déruelle, B. (2018). Insight into geochemistry of basaltic rocks from Mt Cameroon and characterization of the mantle source. International Journal of Advanced Geosciences, 6(2), 151-164. https://doi.org/10.14419/ijag.v6i1.10738