Mechanical and thermal properties versus effective cubic lattice constant in Cu2-II-IV-VI4 quaternary compounds

  • Authors

    • Marouane Djellal Faculté des sciences et de la technologie, Université de Bordj Bou Arreridj, Bordj BouArreridj, 34000, Algérie
    • Aymen Mebarki Faculté des sciences et de la technologie, Université de Bordj Bou Arreridj, Bordj BouArreridj, 34000, Algérie
    • Abdelfateh Benmakhlouf Faculté des sciences et de la technologie, Université de Bordj Bou Arreridj, Bordj BouArreridj, 34000, Algérie
    • Salah Daoud Laboratory of Materials and Electronic Systems (LMSE), Faculty of Sciences and Technology, Bordj Bou Arreridj University, 34000 Bordj Bou Arreridj, Algeria
    2022-06-08
    https://doi.org/10.14419/ijac.v10i1.32053
  • Cu2-II-IV-VI4 Semiconductors, Least-Squares Fit, Thermal Properties, Effective Cubic Lattice Constant, Microhardness
  • The present work aims to study the dependence of the bulk modulus B and the Debye temperature θD with the effective cubic lattice constant aeff of some Cu2-II-IV-VI4 compounds. We are also studied the correlation between the bulk modulus B, the Debye temperature θD, the microhardness H and the melting point Tm.

    The fits of the data of the bulk modulus B and the Debye temperature θD versus the effective cubic lattice constant aeff show that B of Cu2-II-IV-VI4 semiconducting materials decreases almost linearly with increase of the effective cubic lattice constant aeff, while that of Debye Temperature θD decreases exponentially with a rising of the effective cubic lattice constant aeff. The coefficients of the correlation were found at around -0.78 for the bulk modulus B, and at around -0.94 for the Debye temperature, respectively.

    For the bulk modulus B, the best fit was obtained using the following expression: B = - 596.52 aeff + 393.4, where B is expressed in GPa, and aeff in nm, while that of θD is: θD = 165.46 + 3.8 exp (-57.2 aeff), respectively. The average error on the estimation of B was found at around 10%, while that on the estimation of θD is only around 4.5%, respectively. Our expressions perhaps used with high accurate to predict the bulk modulus B and the Debye temperature θD of other quaternary Cu2-II-IV-VI4 semiconducting materials.

  • References

    1. [1] X. He, and H. Shen, "First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4", Physica B: Condensed Matter, Vol. 406, No. 24, (2011), pp. 4604–4607. https://doi.org/10.1016/j.physb.2011.09.035.

      [2] S. Daoud, and A. Latreche, "Comment on density functional investigation on electronic structure and elastic properties of BeX at high pressure", Indian Journal of Physics: Vol. 90, No.11, (2016), pp.1243-1244. https://doi.org/10.1007/s12648-016-0863-4.

      [3] H. Rekab-Djabri, M. M. Abdus Salam, S. Daoud, M. Drief, Y. Guermit, and S. Louhibi-Fasla, " Ground state parameters, electronic properties and elastic constants of CaMg3: DFT study", Journal of Magnesium and Alloys, Vol. 8, No.4, (2020), pp. 1166-1175. https://doi.org/10.1016/j.jma.2020.06.007.

      [4] S. Daoud, "Comment on structural phase transition, electronic and elastic properties in TlX (X = N, P, As) compounds: Pressure-induced effects" Computational Materials Science, Vol. 111, No. 1, (2016), pp. 532 - 533. https://doi.org/10.1016/j.commatsci.2015.09.022.

      [5] S. Daoud, "Sound velocities and thermal properties of BX (X=As, Sb) compounds", International Journal of Scientific World: Vol. 3, No.1, (2015), pp. 43-48. https://doi.org/10.14419/ijsw.v3i1.4039.

      [6] H. Rekab-Djabri, R. Khatir, S. Louhibi-Fasla, I. Messaoudi, and H. Achour, "FPLMTO study of new phase changes in CuX (X= Cl, Br, I) compounds under hydrostatic pressure", Computational Condensed Matter, Vol. 10, No. 3, (2017), pp. 15-21. https://doi.org/10.1016/j.cocom.2016.04.003.

      [7] S. Daoud, P. K. Saini, and H. Rekab-Djabri, "Elastic constants and optical phonon frequencies of BX (X= P, As, and Sb) semiconductors: Semi-empirical prediction", International Journal of Physical Research: Vol. 8, No.2, (2020), pp. 45-49. https://doi.org/10.14419/ijpr.v8i2.31001.

      [8] S. Daoud, " Sound velocities and thermal properties of BeX (X=S, Se and Te) alkaline-earth chalcogenides", International Journal of Scientific World, Vol.5, No.1, (2017), pp. 9-12. https://doi.org/10.14419/ijpr.v8i2.31001.

      [9] N. Bioud, X-W. Sun, S. Daoud, T. Song, R. Khenata, and S. Bin Omran," High-temperature and high-pressure physical properties of CuI with zinc-blende phase by a systematic ab initio investigation", Optik, Vol. 155, No. 2, (2018), pp. 17-25. https://doi.org/10.1016/j.ijleo.2017.11.006.

      [10] J. Tan, G. Ji, X. Chen, L. Zhang, and Y. Wen, "The high-pressure phase transitions and vibrational properties of zinc-blende XTe (X = Zn, Cd, Hg): Performance of local-density-approximation density functional theory", Computational Materials Science, Vol. 48, No. 4, (2010), pp. 796-801. https://doi.org/10.1016/j.commatsci.2010.03.037.

      [11] S. Daoud, N. Bioud, and N. Lebga, "Structural, elastic, piezoelectric and electronic properties of (B3) AlP compound under pressure", Journal of optoelectronics and advanced materials, Vol. 16, No. 1-2, (2014), pp. 207-214. https://joam.inoe.ro/articles/structural-elastic-piezoelectric-and-electronic-properties-of-b3-alp-compound-under-pressure/.

      [12] S. Daoud, N. Bioud, N. Lebga, and R. Mezouar, "Optoelectronic and thermal properties of boron-bismuth compound", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp27-34. https://doi.org/10.14419/ijpr.v2i2.2760.

      [13] S. Daoud, "Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors", International Journal of Scientific World: Vol. 3, No.2, (2015), pp. 275-279. https://doi.org/10.14419/ijsw.v3i2.5314.

      [14] S. Daoud, "Linear correlation between Debye temperature and lattice thermal conductivity in II-VI and III-V semiconductors", International Journal of Scientific World: Vol. 3, No. 2, (2015), pp. 216-220. https://doi.org/10.14419/ijsw.v3i2.4793.

      [15] S. Daoud, "Empirical study of elastic properties of BX (X = As, Sb) materials", International Journal of Scientific World, Vol.3, No.1, (2015), pp. 37-42. https://doi.org/10.14419/ijsw.v3i1.4022.

      [16] M. Quintero, E. Moreno, S. Alvarez, J. Marquina, C. Rincón, E. Quintero, P. Grima, J-A. Heano, and M. A. Macías, "Lattice parameter values and phase transitions for the Cu2-II-IV-S4(Se4) (II = Mn, Fe, Co; IV=Si, Ge, Sn) magnetic semiconductor compounds", Revista Latinoamericana de Metalurgia y Materiales, Vol. 34, No. 1, (2014), pp. 28-38. http://ve.scielo.org/pdf/rlmm/v34n1/art03.pdf

      [17] S. Adachi, "Earth-Abundant Materials for Solar Cells", John Wiley & Sons Ltd, the atrium, Southern Gate, Chichester, West Sussex, Po19 8SQ, United Kingdom, (2015). ISBN 9781119052777 https://doi.org/10.1002/9781119052814.

      [18] S. Daoud, H. Rekab-Djabri, and N. Beloufa, "Melting point and microhardness of Cu2-II-IV-VI4 compounds ", International Journal of Physical Research, Vol. 10, No. 1, (2022), pp. 53-54. https://www.sciencepubco.com/index.php/IJPR/article/download/31946/16796

      [19] K. Ito, "Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells", John Wiley & Sons Ltd, the atrium, Southern Gate, Chichester, West Sussex, Po19 8SQ, United Kingdom, (2015). ISBN 978-1-118-43787-2 https://doi.org/10.1002/9781118437865.

      [20] R. Mezouar, N. Bioud, and A. Benmakhlouf, "Correlation trend between the bulk modulus, microhardness and the lattice parameter of III-V semiconductors", International Journal of Advanced Chemistry, Vol. 10, No. 1, (2022), pp. 9-11. https://www.sciencepubco.com/index.php/IJAC/article/view/32020

      [21] R.B.V. Chalapathy, G. S. Jung, and B. T. Ahn, "Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells", Solar Energy Materials & Solar Cells, Vol. 95, No.12, (2011), pp. 3216–3221. https://doi.org/10.1016/j.solmat.2011.07.017.

      [22] Y. L. Gao, and Y. J. Dong, "Structural, mechanical and thermal properties of Cu2ZnSiS4 with four structures from the first-principle calculations", International Journal of Modern Physics B, Vol. 33, No. 9, (2019), pp. 1950067 (10 pages). https://doi.org/10.1142/S021797921950067X.

      [23] Y. L. Gao, W. S. Guan, and Y. J. Dong. "Elastic and thermal properties of orthorhombic and tetragonal phases of Cu2ZnSiSe4 by first principles calculations". Semiconductors, Vol. 54, No. 10, (2020), pp. 1185–1190. https://doi.org/10.1134/S1063782620100115.

      [24] S. Hasan, K. Baral, N. Li, and W‑Y. Ching, "Structural and physical properties of 99 complex bulk chalcogenides crystals using frst‑principles calculations", Scientific Reports, Vol. 11, (2021), pp. 9921 (18 pages). https://doi.org/10.1038/s41598-021-89281-6.

      [25] A. Latreche and S. Daoud "Comment on pressure induced phase transition, elastic and thermal properties of rare earth tellurides", Transactions of the Indian Institute of Metals: Vol. 70, No.4, (2017), pp. 1159 -1160. https://doi.org/10.1007/s12666-016-0969-6.

      [26] N. Bioud, "Comment on structural, electronic, elastic, optical and thermodynamic properties of copper halides CuCl, CuBr and their ternary alloys CuCl1−xBrx (0.0 ≤ x ≤ 1.0) using full-potential linear muffin-tin orbital (FP-LMTO) method [Optik 127 (2016) 4559-4573]", Optik, Vol. 127, No.23, (2016), pp. 11395-11397. https://doi.org/10.1016/j.ijleo.2016.08.020.

      [27] K. Tang, T. Wang, W. Qi, and Y. Li, "Debye temperature for binary alloys and its relationship with cohesive energy", Physica B: Condensed Matter, Vol. 531, No.2, (2018), pp. 95–101.https://doi.org/10.1016/j.physb.2017.12.025.

      [28] S. Daoud, N. Bioud, L. Belagraa, and N. Lebga, "Elastic, optoelectronic and thermal properties of boron phosphide", Journal of Nano-and Electronic Physics, Vol. 5, No.4, (2013), pp. 04061 (6pp). https://jnep.sumdu.edu.ua/download/numbers/2013/4/articles/jnep_2013_V5_04061.pdf

      [29] G. Sai Gautam, and K.C. Hari Kumar, " Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: A first principles study", Journal of Alloys and Compounds, Vol. 587, No. 2, (2014), pp. 380-386. https://doi.org/10.1016/j.jallcom.2013.10.156.

      [30] S. Daoud, N. Bioud, L. Belagraa, and N. Lebga, "Corrigendum to the Manuscript Entitled “Elastic, Optoelectronic and Thermal Properties of Boron Phosphide†[J. Nano- Electron. Phys. 5 No 4, 04061 (2013)]", Journal of Nano-and Electronic Physics: Vol. 14, No.2, (2022), pp. 02030 (1pp). https://doi.org/10.21272/jnep.14(2).02030.

  • Downloads

  • How to Cite

    Djellal, M., Mebarki, A., Benmakhlouf, A., & Daoud, S. (2022). Mechanical and thermal properties versus effective cubic lattice constant in Cu2-II-IV-VI4 quaternary compounds. International Journal of Advanced Chemistry, 10(1), 32-35. https://doi.org/10.14419/ijac.v10i1.32053