The application of IoT-based hydroponic system and solar power to increase agricultural production and horticultural crop productivity

  • Authors

    • Irvan Hermala Program Studi Manajemen Universitas Mercu Buana, Jakarta Barat, DKI Jakarta
    • Agus Ismail Program Studi Teknik Industri Universitas Mercu Buana, Jakarta Barat, DKI Jakarta
    • Nur Hendrasto Institut Tazkia, Kabupaten Bogor, Jawa Barat,
    • Azqia Maulida Darda Institut Pertanian Bogor, Kampus IPB, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kab. Bogor, Jawa Barat 16680
    • Syukur Daulay
    2022-02-19
    https://doi.org/10.14419/ijet.v11i1.31943
  • Agriculture, IoT, Solar Power, Smart Farming, Productivity.
  • Agriculture is important sector to fill the basic need of human: food. It will increase as the increasing of population. In this researh, IoT that was powered by solar power was successfully implemented to hydroponic system. The IoT controlled the parameter and solar panel power in the hydroponic system effectively where the solar panel generated power up to 2.5 kW during the day and it was used for powering greenhouse that need about 477 W power. Research was conducted by comparing productivity of conventional farming to hydroponic smart farming. The physical properties of plants from species of Ipomea aquatica, Brassica chinensi, Lactuca sativa, and Brassica rapa that were cultivated in smart farming and conventional farming were measured and analyzed. It was revealed that the height of Ipomoea aquatica was 52.63 cm in smart farming, whereas the height was 42.66 cm in conventional farming. The average height and weight of the plants and the number of leaves lead to the fact that smart farming results in higher productivity than other method because of optimum nutrition in smart farming.

     

     

  • References

    1. [1] BPS: Produksi Tanaman Sayuran 2020, https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html.

      [2] Raya, A.B. dan S.: Opini masyarakat terhadap citra komoditas pangan lokal (Studi kasus opini pemuda pedesaan Yogyakarta dan mahasiswa Fakultas Pertanian UGM). J. Ilmu-Ilmu Pertan. 6, 116–141 (2010).

      [3] Gruda, N., Bisbis, M., Tanny, J., Ibrahim, J.T., Mufriantie, F., Ahmad, Z., Najeeb, M.A., Shakoor, R.A., Al-Muhtaseb, S.A., Touati, F., Akash, S., Shwetharani, R., Kusuma, J., Balakrishna, R.G., Alam, A., Wulandari, A.I., Fadilah, I.: ANALISIS KEKUATAN DAN UMUR KELELAHAN SHAFT PROPELLER KAPAL SPOB. Sol. Energy. 225, 1551–1564 (2019). https://doi.org/10.1016/j.solener.2021.06.031.

      [4] Kamilaris, A., Gao, F., Prenafeta-Boldu, F.X., Ali, M.I.: Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. 2016 IEEE 3rd World Forum Internet Things, WF-IoT 2016. 442–447 (2017). https://doi.org/10.1109/WF-IoT.2016.7845467.

      [5] Rosliani, R., Sumarni, N.: Budidaya Tanaman Sayuran dengan sistem hidroponik, (2005).

      [6] Roidah, I.S.: Pemanfaatan lahan dengan menggunakan sistem hidroponik. J. Bonorowo. 1, 43–49 (2014).

      [7] Damayanti, N., Widjajanto, D., Sutarno, S.: Pertumbuhan dan produksi tanaman sawi Pakcoy (Brassica rapa l.) akibat dibudidayakan pada berbagai media tanam dan dosis pupuk organik. J. Agro Complex. 3, 142 (2019). https://doi.org/10.14710/joac.3.3.142-150.

      [8] Wahyuningsih, A., Fajriani, S., Aini, N.: Komposisi Nutrisi Dan Media Tanam Terhadap Pertumbuhan Dan Hasil Tanaman Pakcoy (Brassica Rapa L.) Sistem Hidroponik. J. Produksi Tanam. 4, (2016).

      [9] Kamalia, S., Dewanti, P., Soedradjad, R.: TEKNOLOGI HIDROPONIK SISTEM SUMBU PADA PRODUKSI SELADA LOLLO ROSSA (Lactuca sativa L.) DENGAN PENAMBAHAN CaCl2 SEBAGAI NUTRISI HIDROPONIK. J. AGROTEKNOLOGI. 11, 96 (2017). https://doi.org/10.19184/j-agt.v11i1.5451.

      [10] Adimihardja, S.A., Sunardi, O., Mulyaningsih, Y.: PENGARUH TINGKAT PEMBERIAN ZPT GIBBERELLIN (GA3) TERHADAP PERTUMBUHAN VEGETATIF TANAMAN KANGKUNG AIR (Ipomea aquatica Forsk L.) PADA SISTEM HIDROPONIK FLOATING RAFT TECHNIQUE (FRT). Presented at the (2017).

      [11] Mohamood, N., Zainal, N., Kadmin, ahmad fauzan, Abd Gani, S.F., Tengku Wook, T.T.: Integrated Smart Farming Based on Internet of Things (Iot) System for Figs Cultivation. IJITEE (International J. Inf. Technol. Electr. Eng. 9, 1429–1436 (2019). https://doi.org/10.35940/ijitee.B6157.129219.

      [12] Dwiputra, R., Saputra, R.E., Setianingsih, C.: Perancangan Sistem Kendali Dan Pemantauan Tanaman Hidroponik Berbasis Internet of Things (iot). eProceedings Eng. 8, (2021).

      [13] Cherupurakal, N., Mozumder, M.S., Mourad, A.-H.I., Lalwani, S.: Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels. Renew. Sustain. Energy Rev. 151, 111538 (2021). https://doi.org/10.1016/j.rser.2021.111538.

      [14] Hardana, Radian Ferrari Isputra: MEMBUAT APLIKASI IOT: INTERNET OF THINGS. Lokomedia, Yogyakarta (2019).

      [15] Iqbal, M.: Penggunaan pupuk mejemuk sebagai sumber hara pada budidaya bayam secara hidroponik dengan tiga cara fertigasi. (2006).

      Rahmadhani, L., Widuri, L., Dewanti, P.: KUALITAS MUTU SAYUR KASEPAK (KANGKUNG, SELADA, DAN PAKCOY) DENGAN SISTEM BUDIDAYA AKUAPONIK DAN HIDROPONIK. J. AGROTEKNOLOGI. 14, 33 (2020). https://doi.org/10.19184/j-agt.v14i01.15481.
  • Downloads

  • How to Cite

    Hermala, I., Ismail, A., Hendrasto, N., Maulida Darda, A., & Daulay, S. (2022). The application of IoT-based hydroponic system and solar power to increase agricultural production and horticultural crop productivity. International Journal of Engineering & Technology, 11(1), 20-26. https://doi.org/10.14419/ijet.v11i1.31943