Comparison of seismic provisions of Andean countries

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This paper presents a seismic provisions comparison used in the countries of the Andean region. A brief summary of the Andean region seismicity, showing historical seismicity and the probability of earthquake occurrence in each Andean country and the overall zone is pre-sented; then a seismic provisions comparison is presented in tables taking into account the seismic hazard according to the peak ground acceleration, the site effects according to the soil classification and response spectra pseudo-acceleration. Finally, a static analysis of seismic force is carried out for each country in an intermediate-to-high seismic zone, the base design shear force is computed, and the results are compared.

     


  • Keywords


    Seismic Provisions; Historical Seismicity; Shear Base Force; Andean Region; Building Code.

  • References


      [1] Naciones Unidas, La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3). Santiago, 2018.

      [2] United Nations, “Sendai Framework for Disaster Risk Reduction 2015 - 2030.” UNISDR/GE/2015 - ICLUX EN5000 1st edition, 2015.

      [3] J. Chavez, O. Khemici, M. Khater, and P. Keshishian, “Building Codes and Relative Seismic Vulnerability in Latin American Countries,” p. 10.

      [4] P. Giri, A. D. Bhatt, D. Gautam, and H. Chaulagain, “Comparison between the seismic codes of Nepal, India, Japan, and EU,” Asian J Civ Eng, vol. 20, no. 2, pp. 301–312, Feb. 2019, https://doi.org/10.1007/s42107-018-0102-8.

      [5] S. Santos, C. Giardelis, M. trykova, C. Bucur, L. Zanaica, and S. Lima, “Comparative Study of a Set of Codes for the Seismic Design of Buildings,” vol. 1, p. 136, Sep. 2017.

      [6] V. Khose, Y. Singh, and D. Lang, “A Comparative Study of Design Base Shear for RC Buildings in Selected Seismic Design Codes,” Earthquake Spectra, vol. 28, pp. 1047–1070, Aug. 2012, https://doi.org/10.1193/1.4000057.

      [7] B. K. Horton, “Tectonic Regimes of the Central and Southern Andes: Responses to Variations in Plate Coupling During Subduction,” Tectonics, vol. 37, no. 2, pp. 402–429, 2018, https://doi.org/10.1002/2017TC004624.

      [8] C. Dimaté et al., “Seismic hazard assessment in the Northern Andes (PILOTO Project),” Annali di Geofisica, vol. 42, no. 6, 1999, Accessed: Feb. 24, 2020. [Online]. Available: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3787.

      [9] Ministerio del Interior, Obras Públicas y Vivienda and Instituto Nacional de Prevención Sísmica, Reglamento Argentino para Construcciones Sismorresistentes INPRES-CIRSOC 103. Argentina: INTI, 2018.

      [10] Ministerio de Obras Públicas, Servicios y Vivienda, Guía Boliviana de Diseño Sísmico. Bolivia, 2020.

      [11] Instituto Nacional de Normalización, NCh433.Of1996 Modificada en 2012, Diseño Sísmico de Edificios. Chile, 2012.

      [12] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, NSR-10, Reglamento Colombiano de Construcción Sismo Resistente. Colombia, 2010.

      [13] Ministerio de Desarrollo Urbano y Vivienda and Cámara de la Industria de Construcción, NEC, Norma Ecuatoriana de la Construcción. Ecuador, 2014.

      [14] Ministerio de Vivienda, Construcción y Saneamiento, Norma Técnica E.30 “Diseño Sismorresistente.” Perú, 2018.

      [15] Fundación Venezolana de Investigaciones Sismológicas, Edificaciones Sismo Resistentes, Parte I: Requisitos (COVENIN 1756), Ministerio de Ciencia y Tecnología. Venezuela, 2001.


 

View

Download

Article ID: 31219
 
DOI: 10.14419/ijet.v9i4.31219




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.