Absorption properties of TiO2 coated MWCNT/FE3O4/poly aniline Nano composite in x-band

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The aim of current research is construction and investigation of radar absorbing material (RAM) -TiO2@MWCNT/Fe3O4/PANI nano composite. In order to construction of nano composite sample; we prepare 20% weight of TiO2@MWCNT nano fillers (by sol gel method) , Fe3O4 and PANI in separate form and then we used proper solution in ultrasonic bath by adding epoxy resin and hardener with nano composite solution blending method in X band standard size (22.8*10.16 mm2) and 3mm thickness. Phase and morphology features were investigated by X ray diffraction analysis and Scanning electron microscopy. RAM- TiO2@MWCNT/Fe3O4/PANI nano composite mi-crowave features were studied at X band at the range of 8-12 GHz by vector network analyzer. Reflection loss has two minimum peak such as -28.59 dB at 9.36 GHz and -33.77 dB at 10.9 GHz. Electromagnetic parameters such as permeability, permittivity, tangent loss and refractive coefficient were studied. Results showed that using proper nano fillers to combining dielectric and magnetic losses microwave absorption increasing.


  • Keywords

    Fe3O4; Permeability; Permittivity; TiO2@MWCNT; X-band.

  • References

      [1] A. Shah, A. Ding, Y. Wang, L. Zhang, D. Wang, J. Muhammad, H. Huang, Y. Duan, X. Dong, Z. Zhang, Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites, Carbon, 96. (2016). 987-997. https://doi.org/10.1016/j.carbon.2015.10.047.

      [2] R. Panwar, S. Puthucheri, V. Agarwala, D. Sing, Effect of particle size on radar wave absorption of fractal frequency selective surface loaded multilayered structures, IEEE International microwave and RF conference, (2014). https://doi.org/10.1109/IMaRC.2014.7038984.

      [3] Q. Q. Ni, Y. F. Zhu, L. J. Yu, Y. Q. Fu, One-dimensional carbon nanotube@polyaniline multiheterostructures for microwave absorbing application.Nanoscale reseach letters, (2015).

      [4] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, Microwave absorptive behavior of ZnCo substituted W-type Ba hexaferrite nanocrystalline composite material, J.Magn.Magn.Mater, 212 (2000). 175-177. https://doi.org/10.1016/S0304-8853(99)00755-6.

      [5] T. Wang, Z. Li, M. Lu, B. Wen, Q. Ouyang, Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties, J. Appl. Phys, 113 (2013). 024314. https://doi.org/10.1063/1.4774243.

      [6] C. R. Martins, R. Faez, M. C. Rezende, M. A. D. Paoli, Reactive processing and evaluation of butadiene-styrene copolymer/polyaniline conductive blends, J.Appl. Polym.Sci. 100 (2006). 681-685. https://doi.org/10.1002/app.23843.

      [7] J. Zhao, J. Lin, J. Xiao, H. Fan, Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites, RSC. Adv. 5 (2015) 19345. https://doi.org/10.1039/C4RA12186D.

      [8] S. Dong, M. Xu, J. Wei, X. Yang, X. Lu, The preparation and wide frequency microwave absorbing properties of tri-substituted-bisphthalonitrile/Fe3O4 magnetic hybrid microspheres, J.Magn. Magn. Mater, 349 (2014). 15-20. https://doi.org/10.1016/j.jmmm.2013.08.038.

      [9] Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang, Z. Zhang, Thin and flexibe multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding, Carbon, 96. (2016). 768-777. https://doi.org/10.1016/j.carbon.2015.10.004.

      [10] T. Zhang, B. Zhong, J.Q. Yang, X. X. Hung, G. Wen, Boron and nitrogen doped carbon nanotubes/Fe3O4 composite architectures with microwave absorption property, Science Direct, 41 (2015) 8163-8170. https://doi.org/10.1016/j.ceramint.2015.03.031.

      [11] X. Huang, J. Kun, X. Liu, Titanium dioxide/Multi-Walled Carbon Nanotube heterostructure containing single one carbon nanotube and its electromagnetic properties, World scientific , 7 (2015). 1550102 . https://doi.org/10.1142/S1793292015501027.

      [12] Y. F. Zhu, Q. Q. Ni, Y. Q. Fu, T. Natsuki, Synthesis and microwave absorption properties of electromagnetic functionalized Fe3O4-polyaniline hollow sphere nanocomposites produced by electrostatic self-assembly, J Nanopart Res, (2013). 15:1988. https://doi.org/10.1007/s11051-013-1988-4.

      [13] Y. X. Gong, L. Zhen, T. Jiang, C. Y. Xu, W. Z. Shao, Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance, J.Magn.Magn. Mater, 321. (22). (2009). 3702-3705. https://doi.org/10.1016/j.jmmm.2009.07.019.

      [14] T. H. Ting, C. C. Chiang, P. C. Lin, C. H. Lin, Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materilas, J.Magn. Magn. Mater, 339 (2013). 100-105. https://doi.org/10.1016/j.jmmm.2013.03.004.

      [15] A. M. Gama, M. C. Rezende, Complex permeability and permittivity variation of radar absorbing materials based on MnZn Ferrite in microwave frequencies, Materials research, 16(5). (2013). 997-1001. https://doi.org/10.1590/S1516-14392013005000077.

      [16] S. Hussain, I. Youngs, I. Ford, The electromagnetic properties of nanoparticle colloids at radio and microwave frequencies, Journal of Physics D: Applied Physics, 40 (2007). 5331-5337. https://doi.org/10.1088/0022-3727/40/17/048.

      [17] L. Yan, J. Wang, Y. Ye, Z. Hao, Q. Liu, F. Li, Broadband and thin microwave absorber of nickel-zinc ferrite/carbonyl iron composite, J.Alloy. Compd, 487 (2009). 708-711. https://doi.org/10.1016/j.jallcom.2009.08.051.

      [18] S. M. Yuen, C. C. M. Ma, Y. Y. Lin, H. C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite, Composites Sciences and Technology, 67 (2007). 2564-2573. https://doi.org/10.1016/j.compscitech.2006.12.006.

      [19] S. M. Yuen, C. M. Ma, C. Y. Chuang, Y. H. Hsiao, C. I. Chiang, A. Yu, Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites, Composites Part A: Applied Science and Manufacturing, 39 (2008), 119-125. https://doi.org/10.1016/j.compositesa.2007.08.021.

      [20] X. Li, X. Han, Y. Tan, P. Xu, Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles, Journal of alloys and compounds, 464 (2008). 352-356. https://doi.org/10.1016/j.jallcom.2007.09.123.

      [21] D. Zhang, AB. Karki, D. Rutman, DP. Young, A. Wang, D. Cocke, TH. Ho, ZH. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis, Polymer 50: (2009), 4189-4198. https://doi.org/10.1016/j.polymer.2009.06.062.

      [22] P. Camargo , K. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Material Research, Vol. 12, No. 1, (2009). 1-39. https://doi.org/10.1590/S1516-14392009000100002.

      [23] S. Jagtap, D. Ratna, Novel method of dispersion of multiwalled carbon nanotubes in a flexible epoxy matrix, Applied Polymer , (2013). 2610-2618. https://doi.org/10.1002/app.39230.

      [24] G. C. Nayak, S. Sahoo, R. Rajasekar, C. K. Das, Novel approach for the selective dispersion of MWCNTs in the Nylon/SAN blend system, Composites part A: Applied science and manufacturing, 43 (2012). 1242-1251. https://doi.org/10.1016/j.compositesa.2012.03.008.

      [25] D. R. Smith, D. C. Vier, T. Koschny, C. M. Soukoulis, Electromagnetic parameter from inhomogeneous metamaterials, Physical Review E, 71 (2005). 036617. https://doi.org/10.1103/PhysRevE.71.036617.

      [26] P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, S. K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range, Synth.Met, 161 (2011). 1522. https://doi.org/10.1016/j.synthmet.2011.04.033.

      [27] P. Saini, M. Arora, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes, INTECH, 10.5772.(2012). 48779. https://doi.org/10.5772/48779.

      [28] M. R. Meshram, N. K. Agrawal, B. Sinha, P. S. Misra, Transmission line modeling (TLM) for evaluation of absorption in ferrite based multi layer microwave absorber, TENCON, 10.1109 (2003). 1273246.

      [29] S. M. Lee, International encyclopedia of composites , VHC Publishers , New York, (2015). 404-430.

      [30] P. Bhattacharya, S. Sahoo, C. K. Das, Microwave absorption behavior of MWCNT based nanocomposites in X-band region, Express Polymer Letters, Vol.7 , No.2 (2013). 212-223. https://doi.org/10.3144/expresspolymlett.2013.20.




Article ID: 28665
DOI: 10.14419/ijet.v7i4.28665

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.