Optical Crosstalk in WDM Fiber-Radio Networks


  • K. Rambabu
  • . .






Fiber-radio, optical crosstalk, wavelength division multiplexing.


This paper investigates the impact of optical crosstalk in fiber-radio systems incorporating wavelength division multiplexing, (WDM). We present a simple analytical model that allows the impact of optical crosstalk in such networks to be assessed and validate band optical crosstalk. We show that crosstalk-induced power penalties in fiber-radio WDM networks. In addition, in contrast to baseband modulated optical links, the crosstalk channel in fiber-radio systems can be filtered electrically if the crosstalk signal carries a different wireless frequency. However, a power penalty is still observed for the case of in-band crosstalk, even for perfect electrical filtering of the crosstalk channel.




[1] H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,†IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, Dec. 1992.

[2] T.S.Chuand M. J.Gans, “Fiberopticmicrocellular radio,â€IEEE Trans. Veh. Technol., vol. 40, pp. 599–606, Aug. 1991.

[3] A. J. Cooper, “‘Fiber/radio’ for the provision of cordless/mobile telephony services in the access network,†Electron. Lett., vol. 26, pp. 2054–2056, 1990.

[4] G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,†IEEE Photon. Technol. Lett., vol. 10, pp. 1650–1652, Nov. 1998.

[5] R. Heinzelmann, T. Kuri, K. Kitayama, A. Stöhr, and D. Jäger, “Optical add–drop multiplexing of 60 GHz millimeterwave signals in a WDM radio-on-fiber ring,†in Proc. OFC, Baltimore, MD, 2000, paper FH4-1.

[6] R. A. Griffin, P. M. Lane, and J. J. O’Reilly, “Radio-over-fiber distribu-tion using an optical millimeter-wave/DWDM overlay,†in Proc. OFC, vol. 2, USA, 1999, pp. 70–72.

[7] R. Olshansky, V. A. Lanzisera, and P. M. Hill, “Subcarrier multiplexed lightwave systems for broad-band distribution,†J. Lightwave Technol., vol. 7, pp. 1329–1342, Sept. 1989.

[8] E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implica-tions of component crosstalk in transparent lightwave networks,†IEEE Photon. Technol. Lett., vol. 6, pp. 657–660, May 1995.

[9] P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interfero-metric noise induced performance degradation in ASK/direct detection lightwave networks,†J. Lightwave Technol., vol. 14, pp. 1943–1954, Sept. 1996.

[10] L. Moura, M. Darby, P. M. Lane, and J. J. O’Reilly, “Impact of in-terferometric noise on the remote delivery of optically generated mil-limeter-wave signals,†IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1398–1402, Aug. 1997.

[11] D. Castleford, A. Nirmalathas, and D. Novak, “Impact of optical crosstalk in fiber-radio systems incorporating WDM,†in Proc. Int. Top. Meet. Micro. Photon., Oxford, U.K., 2000, paper TU1.6.

[12] H. Kim and Y. C. Chung, “Bi-directional passive optical network for CDMA personal communication service,†in Proc. OFC, vol. 2, 1999, Paper WD5, pp. 67–69.

[13] C. Yang and Y. Lai, “Apodised fiber Bragg gratings fabricated with uni-form phase mask using low cost apparatus,†Electron. Lett., vol. 36, pp. 655–657, 2000.

[14] H. Yamada, K. Takada, Y. Inoue, K. Okamoto, and S. Mitachi, “Low-crosstalk arrayed-waveguide grating multi/demultiplexer with phase compensating plate,†Electron. Lett., vol. 33, pp. 1698–1699, 1997.

[15] R. D. Feldman, T. H. Wood, and R. F. Austin, “Operation of a frequency shift keyed subcarrier multiple-access system for a passive optical net-work in the presence of strong adjacent channel interference,†IEEE Photon. Technol. Lett., vol. 7, pp. 427–430, Apr. 1995.

[16] C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, “Fading in lightwave systems due to polarization-mode dispersion,†IEEE Photon. Technol. Lett., vol. 3, pp. 68–70, Jan1991.

View Full Article:

How to Cite

Rambabu, K., & ., . (2018). Optical Crosstalk in WDM Fiber-Radio Networks. International Journal of Engineering & Technology, 7(4.28), 684–687. https://doi.org/10.14419/ijet.v7i4.28.28343
Received 2019-03-13
Accepted 2019-03-13
Published 2018-11-30