Study and Characterization of Polystyrene/Titanium Dioxide Nanocomposites (PS/TiO2 NCs) for Photocatalytic Degradation Application: a Review


  • Maytham Qabel Hamzah
  • Salim Oudah Mezan
  • Alaa Nihad Tuama
  • Abdullah Hasan Jabbar
  • Mohd Arif Agam





Laser Irradiation, Nanocomposite, Photocatalytic Degradation, Polystyrene, Titanium Dioxide.


Synthetic polymer/TiO2 composite such as Polystyrene/TiO2 has become recent highly research materials due to its potential and significant application in various fields. we can tune the polymer and nanoparticles by different techniques such as change the materials concentration, Exposure of materials to laser radiation, Exposure of materials to laser radiation, especially in tuning the polystyrene/TiO2 composite energy band gap. In this review, several methods of preparation are briefly explored such as pan-milling, precipitation, melt compounding, dip-coating, solution cast, and sol-gel method. Some recent advancement that focuses on the two basic elements: polymer and TiO2 are also included especially discussing on photocatalytic degradation that introduces photon as manipulate parameter to tune the polymer/TiO2 composite energy band gap. Scanning electron microscope (SEM) analysis of various polymer/TiO2 (type n concentration) and Polystyrene/TiO2 (concentration and nanoparticles sizes) are the focus of the discussion before exposure to laser radiation as photodegradation source.





[1] Ihrner N & Johansson M (2017), Improved performance of solid polymer electrolytes for structural batteries utilizing plasticizing co-solvents. Journal of Applied Polymer Science 134(23). doi: 10.1002/app.44917.

[2] Porter RS & Casale A (1985), Recent studies of polymer reactions caused by stress. Polymer Engineering & Science 25(3), 129–156. doi: 10.1002/pen.760250302.

[3] Wang Q (1996), Interactions between Titanium oxide and polystyrene during the Pan-milling process. Polymer International 41(3), 245–249. doi: 10.1002/(SICI)1097-0126(199611)41:3<245::AID-PI588>3.0.CO;2-X.

[4] Jabbar AH, Hamzah MQ & Mezan SO (2018), Green Synthesis of Silver/Polystyrene Nano Composite (Ag/PS NCs ) via Plant Extracts Beginning a New Era in Drug Delivery. Indian Journal of Science and Technology 11(June). doi: 10.17485/ijst/2018/v11i22/121154.

[5] Zhang Q, Peng H & Zhang Z (2007), Antibacteria and detoxification function of polystyrene/TiO2 nanocomposites. Journal of Dispersion Science and Technology 28(6), 937–941. doi: 10.1080/01932690701463050.

[6] Lee SY, Yoon JH, Kim JR & Park DW (2001), Catalytic degradation of polystyrene over natural clinoptilolite zeolite’, Polymer Degradation and Stability 74(2), 297–305. doi: 10.1016/S0141-3910(01)00162-8.

[7] Rajeswari TR. (2014), Impact of plastics on environmental pollution. Journal of Chemical and Pharmaceutical Sciences, (3), 87–93.

[8] Macwan DP, Dave PN & Chaturvedi S (2011), A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science. doi: 10.1007/s10853-011-5378-y.

[9] Geyer R, Jambeck JR & Law KL (2017), Production, use, and fate of all plastics ever made. Science Advances. doi: 10.1126/sciadv.1700782.

[10] Clay G, Song H, Nielsen J, Stasiak J, Khavari M, Jander A & Dhagat P (2015), 3D Printing Magnetic Material with Arbitrary Anisotropy. NIP & Digital Fabrication Conference, 2015, 307–310. Available at:

[11] Martin JW (1993), Quantitative characterization of spectral ultraviolet radiation-induced photodegradation in coating systems exposed in the laboratory and the field. Progress in Organic Coatings 23(1), 49–70. doi: 10.1016/0033-0655(93)80004-T.

[12] Zhao X, Zhao Q, Yu J & Liu B (2008), Development of multifunctional photoactive self-cleaning glasses. Journal of Non-Crystalline Solids 354(12–13), 1424–1430. doi: 10.1016/j.jnoncrysol.2006.10.093.

[13] Sharma SK, Singh VP, Chauhan VS, Kushwaha HS & Vaish R (2017) ‘Photocatalytic self-cleaning transparent 2Bi2O3-B2O3glass ceramics’, Journal of Applied Physics, 122(9). doi: 10.1063/1.5001074.

[14] HajipourMJ et al. (2012), Antibacterial properties of nanoparticles. Trends in Biotechnology. doi: 10.1016/j.tibtech.2012.06.004.

[15] Andres Y, Dumont E & Gerente C (2009), Characterization techniques of packing material colonization in gas biofiltration processes. Canadian Journal of Civil Engineering 36, 1895–1902. doi: 10.1139/L09-143.

[16] Lebeau B et al. (2012), Encapsulation of a UV filter in a mesoporous silica for cosmetic applications. Encapsulation d’un filtre UV dans une silice mésoporeuse: Applications en cosmétique, (366), 14–17. Available at:

[17] Fu G, Vary PS & Lin CT (2005), Anatase TiO2 Nanocomposites for Antimicrobial Coatings Guifen. The Journal of Physical Chemistry B 109(18), 8889–8898. doi: 10.1021/jp0502196.

[18] Lakshmi BB, Dorhout PK & Martin CR (1997) ‘Sol-Gel Template Synthesis of Semiconductor Nanostructures’, Chemistry of Materials 9(3), 857–862. doi: 10.1021/cm9605577.

[19] Gan ZH et al. (2004), Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. Journal of Physics D: Applied Physics 37(1), 81–85. doi: 10.1088/0022-3727/37/1/013.

[20] Baek YW & An YJ (2011), Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb 2O 3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment. Elsevier B.V. 409(8), 1603–1608. doi: 10.1016/j.scitotenv.2011.01.014.

[21] Jaleh B et al. (2011), UV-Degradation Effect on Optical and Surface Properties of Polystyrene-TiO2 Nanocomposite Film. Journal of the Iranian Chemical Society 8(February), 161–168. doi: 10.1007/BF03254293.

[22] Ahmadi M, Ghanbari F & Moradi M (2015), Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: Effect of ph on sulfate and hydroxyl radicals. Water Science and Technology 72(11), 2095–2102. doi: 10.2166/wst.2015.437.

[23] Du W et al. (2012), Influence of oxidation treatment on ballistic electron surface-emitting display of porous silicon. Thin Solid Films, 222–225. doi: 10.1016/j.tsf.2011.11.070.

[24] Lyson-Sypien B et al. (2013), Gas sensing properties of TiO2–SnO2 nanomaterials. Sensors and Actuators B: Chemical 187, 445–454. doi: 10.1016/j.snb.2013.01.047.

[25] Hannecart A et al. (2015), Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale 7(8), 3754–3767. doi: 10.1039/c4nr07064j.

[26] Xu J et al. (2000), Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators, B: Chemical 66(1), 277–279. doi: 10.1016/S0925-4005(00)00381-6.

[27] Cukrov LM, Tsuzuki T and McCormick PG (2001), SnO2 nanoparticles prepared by mechanochemical processing. Scripta Materialia 44(8–9), 1787–1790. doi: 10.1016/S1359-6462(01)00736-9.

[28] Gupta AK & Gupta M (2005), Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021. doi: 10.1016/j.biomaterials.2004.10.012.

[29] Laurent S et al. (2008), Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 108(6), 2064–2110. doi: Doi 10.1021/Cr900197g.

[30] Džunuzović E et al. (2009), Thermal properties of PS/TiO2nanocomposites obtained by in situ bulk radical polymerization of styrene. Materials Letters 63(11), 908–910. doi: 10.1016/j.matlet.2009.01.039.

[31] Barkoula NM et al. (2008), Characterization of In Situ Prepared Nanocomposites of PS and TiO2 Nanoparticles Surface Modified with Alkyl Gallates: Effect of Alkyl Chain Length’, Polymers and Polymer Composites 16(2), 101–113. doi: 10.1002/pc.

[32] Taylor P et al. (2012), Thermal Properties and Combustion Behaviors of Polystyrene / Surface-Modified TiO 2 Nanotubes Nanocomposites. Polymer-Plastics Technology and Engineering 51, 647–653. doi: 10.1080/03602559.2012.661901.

[33] Sang XM et al. (2010), Effect of Core-shell Particles on the Properties of Polystyrene/TiO2 Nanocomposites. Advanced Materials Research 139–141, 90–93. doi: 10.4028/

[34] Zan L et al. (2004), A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General 264(2), 237–242. doi: 10.1016/j.apcata.2003.12.046.

[35] Zan L et al. (2006), Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO2 catalyst. Polymer 47(24), 8155–8162. doi: 10.1016/j.polymer.2006.09.023.

[36] Herrera-Sandoval GM et al. (2013), Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene. Materials Sciences and Applications 04(03), 179–185. doi: 10.4236/msa.2013.43021.

[37] Wang Z et al. (2005), Study on novel antibacterial high-impact polystyrene/TiO2 nanocomposites. Journal of Materials Science 40(24), 6433–6438. doi: 10.1007/s10853-005-1713-5.

[38] Zhang J et al. (2002), Preparation and Performance of High-Impact Polystyrene ( HIPS )/ Nano-TiO 2 Nanocomposites. Journal of Applied Polymer Science 87, 381–385.

[39] Della Pelle A M et al. (2012), Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors. Thin Solid Films. Elsevier B.V. 520(19), 6262–6267. doi: 10.1016/j.tsf.2012.05.075.

[40] Yabagi JA et al. (2017), Structural transformation of polystyrene nanosphere produce positive and negative resists by controlled laser exposure. Advanced Science Letters 23(7), 6613–6617. doi: 10.1166/asl.2017.9696.

[41] Weller H (1993), Quantized Semiconductor Particles: A novel state of matter for materials science. Advanced Materials, 88–95. doi: 10.1002/adma.19930050204.

[42] Campbell CT & Sellers JR (2012), The entropies of adsorbed molecules. Journal of the American Chemical Society 134(43), 18109–18115. doi: 10.1021/ja3080117.

[43] Marklund S (1976), Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. Journal of Biological Chemistry 251(23), 7504–7507.

[44] Lei Y, Lei H & Huo J (2015), Innovative controllable photocatalytic degradation of polystyrene with hindered amine modified aromatic polyamide dendrimer/ polystyrene-grafted-TiO2 photocatalyst under solar light irradiation. Polymer Degradation and Stability. Elsevier Ltd, 118, 1–9. doi: 10.1016/j.polymdegradstab.2015.04.005.

[45] Dvoranová D et al. (2002), Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental 37(2), 91–105. doi: 10.1016/S0926-3373(01)00335-6.

[46] Umebayashi T et al. (2002), Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations. Journal of Physics and Chemistry of Solids 63, 1909–1920. doi: 10.1016/S0022-3697(02)00177-4.

[47] Yamashita H et al. (2003), Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2catalysts: Fe ion-implanted TiO2. Catalysis Today, 191–196. doi: 10.1016/S0920-5861(03)00273-6.

[48] Xie Y & Yuan C (2003), Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Applied Catalysis B: Environmental 46(2), 251–259. doi: 10.1016/S0926-3373(03)00211-X.

[49] Ohno T et al. (2001), TiO2-Photocatalyzed Epoxidation of 1-Decene by H2O2 under Visible Light. Journal of Catalysis 204(1), 163–168. doi: 10.1006/jcat.2001.3384.

[50] Ikeda S et al. (2003), Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 160(1–2), 61–67. doi: 10.1016/S1010-6030(03)00222-3.

[51] Khan SU, Al-Shahry M & Ingler WB (2002), Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245. doi: 10.1126/science.1075035.

[52] Asahi R et al. (2001), Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271. doi: 10.1126/science.1061051.

[53] Umebayashi T et al. (2002), Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters 81(3), 454–456. doi: 10.1063/1.1493647.

[54] Ohno T et al. (2004), Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 265(1), 115–121. doi: 10.1016/j.apcata.2004.01.007.

[55] Hoffmann MR et al. (1995), Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95(1), 69–96. doi: 10.1021/cr00033a004.

[56] Fujishima A, Rao TN & Tryk DA (2000), Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1(1), 1–21. doi: 10.1016/S1389-5567(00)00002-2.

[57] Hidaka H et al. (1996), Photocatalyzed degradation of polymers in aqueous semiconductor suspensions. I. Photooxidation of solid particles of polyvinylchloride. Journal of Polymer Science, Part A: Polymer Chemistry 34(7), 1311–1316. doi: 10.1002/(SICI)1099-0518(199605)34:7<1311::AID-POLA18>3.0.CO;2-C.

[58] Cho S & Choi W (2001), Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. Journal of Photochemistry and Photobiology A: Chemistry 143(2–3), 221–228. doi: 10.1016/S1010-6030(01)00499-3.

[59] Laible R & Hamann K (1980), Formation of chemically bound polymer layers on oxide surfaces and their role in colloidal stability. Advances in Colloid and Interface Science 13(1–2), 65–99. doi: 10.1016/0001-8686(80)87002-3.

[60] Shirai Y, Kawatsura K & Tsubokawa N (1999), Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups. Progress in Organic Coatings 36(4), 217–224. doi: 10.1016/S0300-9440(99)00046-6.

[61] Zhang W, Liang M & Lu C (2007), Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14(5), 447–456. doi: 10.1007/s10570-007-9135-y.

[62] Schönert K (1988), A first survey of grinding with high-compression roller mills. International Journal of Mineral Processing 22(1–4), 401–412. doi: 10.1016/0301-7516(88)90075-0.

[63] Vogel L & Peukert W (2005), From single particle impact behaviour to modelling of impact mills. Chemical Engineering Science 60(18), 5164–5176. doi: 10.1016/j.ces.2005.03.064.

[64] Schwarzwälder S, Nied R & Sickel H (2014), Dry fine grinding with jet mills: Potentials of energy optimization. Chemical Engineering and Technology 37(5), 806–812. doi: 10.1002/ceat.201300692.

[65] Zhang J et al. (2005), Ultrasound-Induced Capping of Polystyrene on TiO2 Nanoparticles by Precipitation with Compressed CO2 as Antisolvent J. Journal of Nanoscience and Nanotechnology 5(6), 945–950. doi: 10.1166/jnn.2005.124.

[66] Fa W et al. (2008), Solid-Phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron (II) Phthalocyanine. Applied Catalysis B: Environmental 79(3), 216–23, doi:10.1016/j.apcatb.2007.10.018.

[67] Hamzah MQ, Jabbar AH & Mesan SO (2017), Synthesis and Characterization of Cu 2 ZnSnS 4 ( CZTS ) Thin Film by Chemical Bath Deposition ( CBD ) for Solar Cell Applications. International Journal of Scientific Engineering and Research (IJSER) 5(12), pp. 2015–2017.

[68] Hamzah MQ et al. (2018), ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2 ZNSNS4 THIN FILM FOR SOLAR CELL. International Journal of Technical Research and Applications 6(1), 3–6.

[69] Sunay MS, Pekcan O & Ugur S (2012), The Effect of Film Thickness and Content on Film Formation from PS/ Nanocomposites Prepared by Dip-Coating Method. Journal of Nanomaterials 2012, pp. 1–17. doi: 10.1155/2012/524343.

[70] Acharya AD et al. (2017), UV-shielding efficiency of TiO2-polystyrene thin films prepared by solution cast method. Journal of Physics, 3–7. doi: 10.1088/1742-6596/836/1/012048.

[71] Tseng TK et al. (2010), A review of photocatalysts prepared by sol-gel method for VOCs removal. International Journal of Molecular Sciences, 2336–2361. doi: 10.3390/ijms11062336.

[72] Kimura H et al. (2008), Synthesis of TiO2 Photo Catalysis Films on A2024 Alloy for Astronautics Applications by Sol-Gel Method. International Journal of Microgravity Science and Application, 1–4.

[73] Zan L et al. (2004), A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General 264(2), 237–242. doi: 10.1016/j.apcata.2003.12.046.

[74] Shang J, Chai M & Zhu Y (2003), Solid-phase photocatalytic degradation of polystyrene plastic with TiO2as photocatalyst. Journal of Solid State Chemistry 174(1), 104–110. doi: 10.1016/S0022-4596(03)00183-X.

[75] Shang J, Chai M & Zhu Y (2003), Photocatalytic degradation of polystyrene plastic under fluorescent light. Environmental Science and Technology 37(19), 4494–4499. doi: 10.1021/es0209464.

[76] Singh S, Singh PK & Mahalingam H (2014), Novel Floating Ag+‑Doped TiO2/Polystyrene Photocatalysts for the Treatment of Dye Wastewater. Industrial & Engineering Chemistry Research 53(42), 16332–16340. doi: 10.1021/ie502911a.

[77] Magalhães F & Lago RM (2009), Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Solar Energy 83(9), 1521–1526. doi: 10.1016/j.solener.2009.04.005.

[78] Karabacak RB et al. (2014), Facile two-step preparation of polystyrene/anatase TiO2core/shell colloidal particles and their potential use as an oxidation photocatalyst. Materials Chemistry and Physics. Elsevier B.V 144(3), 498–504. doi: 10.1016/j.matchemphys.2014.01.026.

View Full Article: