Robust Control Design of Nonlinear System by Using Back-Stepping-GSA and Sliding Mode Technique


  • Sahazati Md Rozali
  • Rozilawati Mohd Nor
  • Amar Faiz Zainal Abidin
  • Muhammad Kamarudin
  • Zairi Ismael Rizman





electro-hydraulic, back-stepping, sliding mode controller, non-linear system.


This work presents the integration of two robust controllers such as back-stepping and sliding mode controller, which is designed for nonlinear system with external disturbance injected to its actuator. Gravitational Search Algorithm (GSA) is applied to the designed controller to optimize the control and reaching law parameters for the system. The dynamics of the system is developed by consider the external force as system’s nonlinearities. The tracking output and tracking error produced by combination of these two controllers is compared with the performance of classical sliding mode controller. Based on the results obtained, integration of these two controllers generates better performance than classical sliding mode controller based on its output and error.




[1] K. I. Kristic, M. I. Kanellakoupulos, P. V. Kokotovic, Nonlinear and adaptive control design. John Wiley and Sons, 1995.

[2] H. K. Khalil, Nonlinear systems. Prentice Hall, 2002.

[3] Z. E. Fang, M. S. Queiroz, D. M. Dawson, Global output feedback control of dynamically positioned surface vessel: An adaptive control approach. Mechatronics, 14, 341-356, 2004.

[4] A. Karimi, A. Al-Hinai, K. Schoder, A. Feliachi, Power system stability enhancement using backstepping controller tuned by particle swarm optimization technique. Proceedings of the IEEE Power Engineering Society General Meeting, 2005, pp. 3055-3060.

[5] I. Ursu, F. Ursu, F. Popescu, Backstepping design for controlling electrohydraulic servos. Journal of Franklin Institute, 343, 94-110, 2006.

[6] P. Nakkarat, S. Kuntanapreda, Observer-based backstepping force control of an electrohydraulic actuator. Control Engineering Practice, 17, 895-902, 2009.

[7] B. M. B. A. Farrokh Payam. Nonlinear sliding mode controller for sensorless speed control of DC servo motor using adaptive backstepping observer. Proceedings of the International Conference on Power Electronics, Drives and Energy Systems, 2006, pp. 1-5.

[8] N. B. Almutairi, M. Zribi, Sliding mode control of coupled tanks. Mechatronics, 16, 427-441, 2006.

[9] Y. Md. Sam, J. H. S. Osman, M. Ruddin A. Ghani, A class of proportional-integral sliding mode control with application to active suspension system. Systems and Control Letters, 51, 217-223, 2009.

[10] H. Liu, Z. Gong, Upper bound adaptive learning of neural network for the sliding mode control of underwater robot. Proceedings of the International Conference on Advanced Computer Theory and Engineering, 2008, pp. 276-280.

[11] A. Bagheri, Jalaljavadimoghaddam, Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle. Neurocomputing, 72, 1934-1950, 2009.

[12] I. Eker, Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Transactions, 45(1), 109-118, 2006.

[13] O. Barambones, P. Alkorta, Aitor J. Garrido, I. Garrido, F. J. Maseda, An adaptive sliding mode control scheme for induction motor drives. International Journal of Circuits, Systems and Signal Processing, 2007, 1(1), 73-78.

[14] M. Hsiung Chiang, L. Wang Lee, H. H. Liu, Adaptive fuzzy sliding-mode control for variable displacement hydraulic servo system. Proceedings of the International Conference on Fuzzy Systems, 2007, pp. 1-6.

[15] H. M. Chen, J. C. Renn, J. P. Su, Sliding mode control with varying boundary layers for an electro-hydraulic position servo system. International Journal of Advanced Manufacturing Technology, 26, 117–123, 2005.

[16] M. Mihajlov, V. Nikolić, D. Antic, Position control of an electro-hydraulic servo system using sliding mode control enhanced by fuzzy PI controller. Facta Universitatis Series: Mechanical Engineering, 1(9), 1217-1230, 2002.

[17] E. Rashedi, H. N. Pour, S. Saryazdi, GSA: A gravitational search algorithm. Information Sciences, 179, 2232-2248, 2009.

[18] S. Duman, D. Maden, U. Güvenç, Determination of the PID controller parameters for speed and position control of DC motor using gravitational search algorithm. Proceedings of the International Conference on Electrical and Electronics Engineering, 2011.

[19] H. Shayeghi, A. Ghasemi, Optimal tuning of PID type stabilizer and AVR gain using GSA technique. International Journal on Technical and Physical Problems of Engineering, 4(2), 98-106, 2012.

[20] S. M. Rozali, M. F. Rahmat, A. R. Husain, M. N. Kamarudin, Design of adaptive backstepping with gravitational search algorithm for nonlinear system. Journal of Theoretical and Applied Information Technology, 59(2), 460-468, 2014.

[21] K. K. Ahn, D. N. C. Nam, M. Jin, Adaptive backstepping control of an electrohydraulic actuator. IEEE/ASME Transactions on Mechatronics, 19(3), 987-995, 2014.

[22] M. A. M. Basri, A. R. Husain, K. A. Danapalasingam, GSA-based optimal backstepping controller with a fuzzy compensator for robust control of an autonomous quadrotor UAV. Aircraft Engineering and Aerospace Technology: An International Journal, 87(5), 493-505, 2015.

[23] S. Md. Rozali, M. F. Rahmat, A. R. Husain, M. N. Kamarudin, Robust Controller design for position tracking of nonlinear system using backstepping-GSA approach. ARPN Journal of Engineering and Applied Sciences, 11(6), 3783-3788, 2016.

[24] S. Md. Rozali, M. F. Rahmat, A. R. Husain, Performance comparison of particle swarm optimization and gravitational search algorithm to the designed of controller for nonlinear system. Journal of Applied Mathematics, 2014, 1-9, 2014.

[25] Y. Qian, L. Weiguo, H. Yongping, Real time simulation study on backstepping sliding mode control of permanent magnet synchronous motor. Proceedings of the International Conference on Electrical Machines and Systems, 2011, pp. 1-5.

[26] R. Benayache, L. Chrifi-Alaoui, A. Benamor, X. Dovifaz, P. Bussy, Robust control of nonlinear uncertain systems via sliding mode with backstepping design. Proceedings of the American Control Conference, pp. 4695-4700, 2010.

[27] C. H. Lu, Y. R. Hwang, Y. T. Shen, Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system. ISA Transactions, 50, 278-286, 2011.

[28] P. Hu, G. Cai, L. Yao, X. Fang, Recursive backstepping nonlinear control and sliding mode control of a novel hyperchaotic finance system. Proceedings of the 2nd International Conference on Computer and Information Application, pp. 0777-0780, 2012.

[29] D. Liu, P. Yang, J. Wu, A combined multiple sliding mode and backstepping design to robust adaptive neural control for uncertain nonlinear systems. Proceedings of the 5th International Conference on Biomedical Engineering and Informatics, pp. 1221-1226, 2012

[30] N. Adhikary, C. Mahanta, Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the cart-pendulum system. ISA Transactions, 52(6), 870-880, 2013.

[31] H. Khebbache, M. Tadjine, Robust fuzzy backstepping sliding mode controller for a quadrotor unmanned aerial vehicle. Journal of Control Engineering and Applied Informatics, 15(2), 3-11, 2013.

[32] D. Elleuch, T. Damak, Backstepping sliding mode controller coupled to adaptive sliding mode observer for interconnected fractional nonlinear system. Recent Advances in Telecommunications, Signals and Systems, pp. 130-138, 2013.

[33] S. Zeghlache, D. Saigaa, K. Kara, A. Harrag, A. Bougerra, Backstepping sliding mode controller improved with fuzzy logic: application to the quadrotor helicopter. Archives of Control Sciences, 22(2), 255–282, 2012.

View Full Article: