Energy and Path Optimization of Robot Arm Simulator Via Multi-Objective Evolutionary Algorithm

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The performance of robot arm motion generated via neural network are presented in this paper. The robot arm motion for obstacle avoidance simultaneously optimizing three functions; minimum distance, minimum time and minimum energy are generated. Four different initial and goal position had been chosen to test and analyze the performance of generated neural controller. The same neural controllers can be employed to a different range of initial and goal position. The motion generated yield good results in the simulator. In this research a new approach for intelligent robot arm path and motion generation are successfully implemented.

     


  • Keywords


    Robot arm, Genetic algorithm, Neural network, Multi-objective evolutionary algorithm.

  • References


      [1] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and H. Str, (2008) “Adaptive Motion Planning for Humanoid Robots,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 22–26.

      [2] T. Asfour, K. Regenstein, P. Azad, J. Schr, A. Bierbaum, N. Vahrenkamp, and R. Dillmann, (2006) “ARMAR-III : An Integrated Humanoid Platform for Sensory-Motor Control,” Humanoids 2006 - 6th IEEE-RAS Int. Conf. Humanoid Robot., pp. 169–175.

      [3] N. Vahrenkamp and H. Str, (2009) “Humanoid Motion Planning for Dual-Arm Manipulation and Re-Grasping Tasks,” no. Section IV, pp. 2464–2470.

      [4] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, (2010) “Integrated Grasp and motion planning,” 2010 IEEE Int. Conf. Robot. Autom., pp. 2883–2888.

      [5] Y. Liu, Y. Jiang, and L. Li, (2011) “Multi-objective performance optimization of redundant robots using differential evolution,” Proc. 2011 6th Int. Forum Strateg. Technol., no. 2, pp. 410–414.

      [6] S. Kim, C. Kim, and J. Park, (2006) “Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database,” 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 3486–3491.

      [7] Z. Mohamed, M. Kitani, and G. Capi, (2013) “Humanoid Robot Arm Performance Optimization using Multi Objective Evolutionary Algorithm,” Int. J. Control Autom. Syst., pp. 1–8.

      [8] E. J. S. Pires, J. A. T. Machado, and P. B. D. M. Oliveira, (2004) “Robot Trajectory Planning Using Multi-objective Genetic Algorithm Optimization,” pp. 615–626.

      [9] E. J. S. Pires, P. B. de Moura Oliveira, and J. A. T. Machado, (2007) “Manipulator trajectory planning using a MOEA,” Appl. Soft Comput., vol. 7, no. 3, pp. 659–667.

      [10] R. Ur-Rehman, S. Caro, D. Chablat, and P. Wenger, (2010) “Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide,” Mech. Mach. Theory, vol. 45, no. 8, pp. 1125–1141.

      [11] S. Ramabalan, R. Saravanan, and C. Balamurugan, (2008) “Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles,” Int. J. Adv. Manuf. Technol., vol. 41, no. 5–6, pp. 580–594.

      [12] A. H. F. Dias and J. A. de Vasconcelos, (2002) “Multiobjective genetic algorithms applied to solve optimization problems,” IEEE Trans. Magn., vol. 38, no. 2, pp. 1133–1136.

      [13] G. Capi, (2007) “Multiobjective Evolution of Neural Controllers and Task Complexity,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1225–1234.

      [14] K. Deb, (2009) Multi-Objective Optimization using Evolutionary Algorithms. West Sussex, UK: John Wiley & Son.


 

View

Download

Article ID: 28150
 
DOI: 10.14419/ijet.v7i4.36.28150




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.