Experimental Performance Investigation of Photovoltaic Module and Water Cooled Photovoltaic/Thermal System under Middle of Iraqi Climatic Conditions

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Photovoltaic(PV) cells are one of the most important resources of renewable energy. In this paper, anexperimental comparative performance study between PV module and water-cooled photovoltaic/thermal (PV/T) solar system at  different  flowrates of (0.5, 1, 1.5, 2) L/min is presented andincluding their thermal and electrical performances. The experiments werecarried out under outdoor exposure to the climate of Hilla, Iraq(32.46 °N, 44.42 °E). Solar irradiance, the temperatures on the front surfaces and back sheet of PV and PV/T solar system, flowing water, ambient air and wind speed are measured. In addition, the electrical power of PV module and PV/T solar system is measured.

    The results show that the maximum enhancement ratio of electrical efficiency of the PV/T solar system compared with PV module is 18.86% in March at flowrate of 2 L/min. The minimum enhancement is 13.36 % in July at flowrate of 0.5 L/min. The maximum overall efficiency improvement ratio of PV/T solar system compared to PV module is 81% in March at flowrate of 2 L/min while the minimum improvement is 74.08% in July at a flowrate of 0.5 L/min. The maximum average of cooling water temperature rise is 11.28 °C at a flowrate of 0.5 L/min in March, while the minimum is 2.69 °C at a flowrate of 2 L/min in July.




  • Keywords

    Solar energy, PV/T solar system, PV module, experimental investigation, comparative study, performance, cooled water.

  • References

      [1] Brahim, T. and Jemni, A. (2017) ‘Economical assessment and applications of photovoltaic / thermal hybrid solar technology : A review’, Solar Energy. Elsevier Ltd, 153, pp. 540–561. doi: 10.1016/j.solener.2017.05.081.

      [2] Chow, T. T. (2010) ‘A review on photovoltaic / thermal hybrid solar technology’, Applied Energy. Elsevier Ltd, 87(2), pp. 365–379. doi: 10.1016/j.apenergy.2009.06.037.

      [3] Fudholi, A. et al. (2014) ‘Performance analysis of photovoltaic thermal ( PVT ) water collectors’, Energy Conversion and Management. Elsevier Ltd, 78, pp. 641–651. doi: 10.1016/j.enconman.2013.11.017.

      [4] Hamid, S. A. (2016) ‘Performance analysis of PV / T Combi with water and air heating system : An experimental study’, Renewable Energy. Elsevier Ltd, 86(October 2015), pp. 716–722. doi: 10.1016/j.renene.2015.08.061.

      [5] Harbi, Y. A. L., Eugenio, N. N. and Zahrani, S. A. L. (1998) ‘RENEWABLE ENERGY’, 5, pp. 5–8.

      [6] Hasan, M. A. and Sumathy, K. (2010) ‘Photovoltaic thermal module concepts and their performance analysis : A review’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 14(7), pp. 1845–1859. doi: 10.1016/j.rser.2010.03.011.

      [7] Ibrahim, A. et al. (2011) ‘Recent advances in flat plate photovoltaic / thermal ( PV / T ) solar collectors’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 15(1), pp. 352–365. doi: 10.1016/j.rser.2010.09.024.

      [8] Kern Jr. EC, Russell Mc., 1978, Combined Photovoltaic and Thermal Hybrid Collector System, Proceedings of 13th IEEE Photovoltaic Specialist pp.1153–7.

      [9] Sathe, T. M. and Dhoble, A. S. (2017) ‘A review on recent advancements in photovoltaic thermal techniques’. Elsevier Ltd, (September). doi: 10.1016/j.rser.2017.03.075.

      [10] Singh, P. and Ravindra, N. M. (2012) ‘Solar Energy Materials & Solar Cells Temperature dependence of solar cell performance — an analysis’, Solar Energy Materials and Solar Cells. Elsevier, 101, pp. 36–45. doi: 10.1016/j.solmat.2012.02.019.

      [11] Sopian, K. et al. (2000) ‘Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems’, 41, pp. 353–365.

      [12] Tiwari, A. et al. (2009) ‘Energy metrics analysis of hybrid – photovoltaic ( PV ) modules’, Applied Energy. Elsevier Ltd, 86(12), pp. 2615–2625. doi: 10.1016/j.apenergy.2009.04.020.

      [13] Tobnaghi, D. M. and Madatov, R. (2013) ‘The Effect of Temperature on Electrical Parameters of Solar Cells’, pp. 6404–6407.

      [14] Trapaga, G., Javier, F. and Rodríguez, G. (2007) ‘Photovoltaic / thermal solar hybrid system with bifacial PV module and transparent plane collector transparent plane collector’, (February 2014). doi: 10.1016/j.solmat.2007.08.005.

      [15] Zondag, H. A. et al. (2002) ‘The thermal and electrical yield of a PV-thermal collector’, Solar Energy, 72(2), pp. 113–128. doi: 10.1016/S0038-092X(01)00094-9.




Article ID: 27984
DOI: 10.14419/ijet.v7i4.19.27984

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.