Content-Based Representation For Moth Recognition And Retrieval: A Review

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    There are numerous of moths on the earth and their presence is useful to our life especially as life indicators. Most of the entomologists have problems to recognize moth’s species because each of them has their own color, texture and shape. The varieties of color, texture and shape of moths has increased the researcher’s attention to improve the method in recognizing the moth’s species. This study investigates the effectiveness of Bag of Visual Words (BOVW) representation for recognizing the moth’s species. BOVW is a simple and effective representation. This representation broadly used especially in computer vision and object recognition. Local descriptors, clustering approaches, and word-image histograms in regards to BOVW for image classification and retrieval are studied. There is a contradiction between BOVW models about spatial information. The extension of BOVW to consider the spatial information is believed able to contribute to a more effective representation for moth recognition and retrieval.

     


  • Keywords


    Bag of Visual Words, moth, recognition, spatial information, retrieval

  • References


      [1] Ali, N., Bajwa, K. B., Sablatnig, R. & Mehmood, Z. (2016). Image Retrieval by Addition of Spatial Information Based on Histogram Of Triangular Regions. Computer and Electrical Engineering, 54, 539-550. http://dx.doi.org/10.1016/j.compeleceng.2016.04.002

      [2] Anwar, H., Zambanini, S. & Kampel, M. (2015). Efficient Scale-and Rotation-Invariant Encoding of Visual Words for Image Classification. IEE Signal Processing Letters, 22(10). doi:10.1109/LSP.2015.2432851

      [3] Csurka, G., Dance, C. R., Fan, L., Willamowski, J. & Bray, C. (2004). Visual Categorization with Bags of Keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV. (pp. 1–22).

      [4] Farhangi, M. M., Soryani, M., & Fathy, M. (2013). Informative Visual Words Construction to Improve Bag of Words Image Representation. IET Image Processing, 8(5), 310-318. doi:10.1049/iet-ipr.2013.0449

      [5] Franco, A., Maltoni, D. & Papi, S. (2017). Grocery Product Detection and Recognition. Expert System with Application, 81, 163-176. http://dx.doi.org/10.1016/j.eswa.2017.02.050

      [6] Feng, L., Bhanu, B. & Heraty, J. (2016). A Software System for Automated Identification and Retrieval of Moth Images Based on Wing Attributes. Pattern Recognition. 51, 225-241. http://dx.doi.org/10.1016/j.patcog.2015.09.012

      [7] Ghosh, M., Mukherjee, J. & Parekh, R. (2013). Fish Shape Recognition Using Multiple Shape Descriptors. International Journal of Computer Applications, 73(16).

      [8] Jiang, Y. -G., Yang, J., Ngo, C. -W. & Hauptmann. A. G. (2010). Representation of Keypoint- based Semantic Concept Detection: A Comprehensive Study. IEEE Transactions on Multimedia, 12(1). doi:10.1109/TMM.2009.2036235

      [9] Khan, R., Barat, C., Muselet, D. & Ducottet, C. (2015). Spatial Histogram of Soft Pairwise Similar Patcher to Improve the Bag- of- Visual- Words Model. Computer Vision and Image Understanding, 132, 102-112. http://dx.doi.org/10.1016/j.cviu.2014.09.005

      [10] López-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J., Cruz-Roa, A., & González, F. A. (2016). Improving The Bovw Via Discriminative Visual N-grams and MKL Strategies. Neurocomputing, 175, 768-781. http://dx.doi.org/10.1016/j.neucom.2015.10.053

      [11] Mansourian, L., Abdullah, M. T., Abdullah, L. N., Azman, A., & Mustaffa, M. R. (2016). BoVW Model for Animal Recognition: An Evaluation on Sift Feature Strategies. In Badioze Zaman, H., Robinson, P., Smeaton, A. F., Shih, T. K., Velastin, S., Jaafar, A., & Mohamad Ali, N. (Eds.). Advances in Visual Informatics (pp. 227-236). Heidelberg: Springer International Publishing.

      [12] Osman, N. S. & Mustaffa, M. R. (2015). A Review on Content-Based Image Retrieval Representation and Description for Fish. Proceedings of the 2015 4th International Conference on Advanced Computer Science Applications and Technologies (ACSAT 2015), 8-10 December 2015, Kuala Lumpur, Malaysia (pp. 39-44). IEEE.

      [13] Pires, R. D. L. et al. (2016). Local Descriptor for Soybean Disease Recognition. Computer and Electronic in Agriculture, 125, 48-55. http://dx.doi.org/10.1016/j.compag.2016.04.032

      [14] Sheikh, A. R., Lye, M. H., Mansor, S., & Fauzi, M. F. A. (2011). A Content Based Image Retrieval System for Marine Life Images. 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), 29–33. http://doi.org/10.1109/ISCE.2011.5973777

      [15] Sivic, J. & Zisserman, A. (2003). Video Google: A Text Retrieval Approach to Object Matching in Videos. Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV’03). IEEE.

      [16] Tu, J., Sui, H., Feng, W., Sun, K., & Hua, L. (2016). Detection of Damaged Rooftop Areas from High-Resolution Aerial Images Based on Visual Bag-of Words Model. IEEE Geoscience and Remote Sensing Letters, 13(12). doi:10.1109/LGRS.2016.2614298

      [17] Wang, R., Ding, K., Yang, J. & Xue, L. (2016). A Novel Method for Image Classification Based on Bag of Visual Words. J. Vis. Commun. Image R., 40, 24-33. http://dx.doi.org/10.1016/j.jvcir.2016.05.022

      [18] Wen, C., Zhou, X., Zhou, C., Chen, X. & Guo, Q. (2013). Bag of Visual Words for Cows’ Basic Activity Recognition. 2013 International Conference on Information Science and Cloud Computing.

      [19] Wang, J., Ji, L., Liang, A. & Yuan, D. (2012). The Identification of Butterfly Families Using Content Based Image Retrieval. Biosystem Engineering III. 24-32. doi:10.1016/j.biosystemseng.2011.10.003

      [20] Wen, C., Guyer, D. E. & Li, W. (2009). Local Feature-Based Identification and Classification for Orchard Insects. Biosystem Engineering, 104, 299-307. doi:10.1016/j.biosystemseng.2009.07.002

      [21] Zhang, F., et al. (2016). Dictionary Pruning with Visual Word Significance for Medical Image Retrieval. Neurocomputing, 177, 75-88. http://dx.doi.org/10.1016/j.neucom.2015.11.008

      [22] Zhu, C., & Peng, Y. (2017). Discriminative Latent Semantic Feature Learning for Pedestrian Detection. Neurocomputing, 238, 126-138. http://dx.doi.org/10.1016/j.neucom.2017.01.043


 

View

Download

Article ID: 27909
 
DOI: 10.14419/ijet.v7i4.38.27909




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.