Mathematical Model of Vacuum Evaporation Using Apparatus with Mechanical Water Vapor Recompression

  • Authors

    • L. A. Shirkin
    • O. G. Selivanov
    • T. A. Trifonova
    • S. I. Roshchina
    • M. E. Ilina
    2018-12-03
    https://doi.org/10.14419/ijet.v7i4.38.27768
  • Mathematical Model, Vacuum Evaporator, Mechanical Recompression of Vapor, Aqueous Solutions Of Mineral Salts, Film Evaporation, Heat Transfer Coefficient, Model Adequacy.
  • This article presents mathematical model of evaporation of aqueous solutions of mineral salts on apparatus with mechanical recompression of water vapor and process intensification upon vacuuming. The developed mathematical model is an engineering prediction where all calculations are associated with technological flowchart of evaporator. Predictions according to the mathematical model for evaporator are exemplified for the case of 2% aqueous solution of sodium chloride evaporated to 15 wt % at distillation capacity of 30 kg/h. Engineering predictions were performed consecutively in 5 stages including material calculation of evaporator; estimation of evaporator temperature mode; hydrodynamic and thermal predictions; estimation of heat transfer coefficient. The developed mathematical model was applied to stationary direct flow evaporation using Mathcad Prime software. In order to perform high quality analysis and to verify adequacy of the mathematical model, 12 criteria were selected characterizing evaporation efficiency in evaporator. Advantages of the developed mathematical model were highlighted and substantiated, practical recommendations on its application were given upon efficiency estimation of vacuum evaporation with mechanical recompression of water vapor.

     

     

  • References

    1. [1] Povorov AA, Pavlova VF, Kornilova NV, Shinenkova NA (2015), Isparitel'nye apparaty s rekompressiei vodyanogo para – energosberegayushchaya tekhnologiya i oborudovanie (ESVA) [Evaporators with water vapor recompression – power saving technology and equipment (ESVA)]. Mir gal'vaniki, 2(30), 24-27.

      [2] Trifonova TA, Povorov AA, Shirkin LA, Selivanov OG, Il'ina ME (2015), Kompleksnaya tekhnologiya ochistki fil'tratsionnykh vod poligonov tverdykh bytovykh otkhodov [Integrated purification of filtration waters of domestic solid wastes landfills]. Ekologiya i promyshlennost' Rossii, 19(11), 4-9.

      [3] Trifonova TA, Roschina SI, Shirkin LA, Selivanov OG, Ilina ME (2015), An integrated innovative technology for the treatment of municipal solid waste landfill leachate. Biosciences Biotechnology Research Asia, 12(3), 2481-2488.

      [4] Trifonova TA, Shirkin LA, Selivanov OG, Il'ina ME, Podolets AA (2016), Otsenka effektivnosti protsessa kontsentrirovaniya vodnykh rastvorov mineral'nykh solei i organicheskikh sred metodom vyparivaniya v rotorno-plenochnom isparitele pri ochistke prirodnykh i stochnykh vod [Efficiency estimation of concentrating of aqueous solutions of mineral salts and organic mediums by evaporation in rotating film evaporator upon purification of natural and effluent waters]. Fundamental'nye issledovaniya, 9, 511-515.

      [5] Lezhneva NV, Elizarov VI, Getman VV (2011), Modelirovanie i diagnostika protsessa distillyatsii v rotorno-plenochnom isparitele s sharnirno zakreplennymi lopastyami s tsel'yu povysheniya ego effektivnosti [Simulation and diagnostics of distillation in rotating film evaporator with pivotally mounted blades aiming at efficiency improvement]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 18, 185-192.

      [6] Ronkin VM (2012), Opredelenie ratsional'noi konstruktsii isparitel'nogo apparata s padayushchei plenkoi s tsel'yu uvelicheniya effektivnosti raboty [Determination of rational evaporator design with free draining film aiming at efficiency improvement]. Sfera. Neft' i Gaz, 2, 90-92.

      [7] Tokarev SM (2013), Matematicheskoe modelirovanie termicheskoi distillyatsii vod pri plenochnom techenii v vakuume [Mathematical simulation of water thermal distillation upon film flow in vacuum]. Komp'yuternye issledovaniya i modelirovanie, 5(2), 205-211.

      [8] Udyma PG, (1985) Plenochnye ispariteli [Film evaporators]. Moscow, Russia: Moscow Energy Institute.

      [9] Protsessy i apparaty khimicheskikh tekhnologii [Processes and apparatuses of chemical technologies. Reference book of chemist and technologist. Part II]. (2006). St. Petersburg, Russia: NPO Professional.

      [10] Petrenko VP, Ryabchuk AN (2014), Rezhimy ukhudshennoi teplootdachi v plenochnykh isparitel'nykh apparatakh [Degraded heat exchange in film evaporators]. Sakhar, 8, 40-47.

      [11] Filippov VV (2014), Teploobmen v khimicheskoi tekhnologii. Teoriya. Osnovy proektirovaniya [Heat exchange in chemical industry. Theory. Designing backgrounds]. Samara, Russia: Samara State Technical University.

  • Downloads

  • How to Cite

    A. Shirkin, L., G. Selivanov, O., A. Trifonova, T., I. Roshchina, S., & E. Ilina, M. (2018). Mathematical Model of Vacuum Evaporation Using Apparatus with Mechanical Water Vapor Recompression. International Journal of Engineering & Technology, 7(4.38), 1222-1226. https://doi.org/10.14419/ijet.v7i4.38.27768