Analysis of Hybrid Power Plant Technology Using Data Weather in North Sumatera

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    North Sumatera which has areas of extreme enough 0-350 altitude above sea stretching from the coast of the Strait of Malaka to the Bukit Barisan mountains, resulting in some very isolated areas and may not be covered by the electricity supply ongride. It is very necessary to conduct basic research on the application of hybrid power generation technologies to meet the lighting facilities in remote villages. After surveying potential at three points, namely: the lowlands, plains and plateaus. From the data analysis shows that, forLowland rainfall amounts average of 166 mm/month, solar irradiance an average of 185.78 Wh/m2/day and an average wind speed of 2.68 knots. Furthermore, to the plains of moderate rainfall average of 176 mm/month, the intensity of solar irradiance 176 Wh/m2/day and wind speeds average 2,32 Knot, while the highlands rainfall average ranges from 171 mm/month, the intensity of solar irradiance 181.09 Wh/m2/day as well as wind speed 2.5 knots. This shows North Sumatera province is potential to develop a hybrid power generation technologies (microhydro, solar, wind and battery) to support the accelerated development of the villages.




  • Keywords

    Hybrid, microhydro, solar, wind

  • References

      [1] KEMENKUMHAM, PP No. 5 Tahun 2006: Kebijakan energi nasional. 2006.

      [2] W. Zhou, C. Lou, Z. Li, L. Lu, and H. Yang, “Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems,” Appl. Energy, vol. 87, no. 2, pp. 380–389, 2010.

      [3] B. Bhandari, K. T. Lee, C. S. Lee, C. K. Song, R. K. Maskey, and S. H. Ahn, “A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources,” Appl. Energy, vol. 133, no. December, pp. 236–242, 2014.

      [4] T. Hoq, U. A. Nawshad, N. Islam, K. Syfullah, and R. Rahman, “Micro Hydro Power : Promising Solution for Off-grid Renewable Energy Source,” Int. J. Sci. Eng. Res., vol. 2, no. 12, pp. 2–6, 2011.

      [5] G. M. P. Yadav, H. Raghavendra, K. V. B. Reddy, M. Ashok, K. C. Reddy, and P. S. G. C. S. Reddy, “An Experimental Prototype of Micro Hydro Power Generation,” vol. 3, no. 1, pp. 1–5, 2015.

      [6] dan B. P. Vetri Nurliyanti, Marlina Pandin, “Pembuatan Peta Energi Surya,” vol. 12, no. 1, pp. 41–49, 2014.

      [7] I. Rahardjo and I. Fitriana, “Analisis Potensi Pembangkit Listrik Tenaga Surya Di Indonesia,” Strateg. Penyediaan List. Nas. Dalam Rangka Mengantisipasi Pemanfaat. PLTU Batubara Skala Kecil, PLTN, dan Energi Terbarukan, P3TKKE, BPPT, Januari, pp. 43–52, 2005.

      [8] D. K. Lal, B. B. Dash, and a K. Akella, “Optimization of PV / Wind / Micro-Hydro / Diesel Hybrid Power System in HOMER for the Study Area,” Int. J. Electr. Eng. Informatics, vol. 3, no. 3, pp. 307–325, 2011.

      [9] O. Erdinc and M. Uzunoglu, “Optimum design of hybrid renewable energy systems: Overview of different approaches,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1412–1425, 2012.

      [10] G. H. Susilo and B. Winardi, “Diesel Dan Energi Terbarukan Di Pulau Enggano , Bengkulu,” Transient, vol. 3, no. 2, pp. 237--244, 2014.

      [11] J. Paska, P. Biczel, and M. Kłos, “Hybrid power systems - An effective way of utilising primary energy sources,” Renew. Energy, vol. 34, no. 11, pp. 2414–2421, 2009.

      [12] J. Badosa et al., “Solar irradiances measured using SPN1 radiometers: Uncertainties and clues for development,” Atmos. Meas. Tech., vol. 7, no. 12, pp. 4267–4283, 2014.

      [13] Y. Cahyono et al., “Pilot Project Pemanfaatan Sel Surya sebagai Pembangkit Listrik Alternatif untuk Rumah Tangga Di Pulau Gili Iyang Sumenep,” vol. 2, no. 1, pp. 30–35, 2018.

      [14] A. Anastasopoulou et al., “Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa.”

      [15] V. Sundstro, “Solar energy for electricity and fuels ¨,” vol. 45, pp. 15–24, 2016.

      [16] M. Arif and T. Hardianto, “Aplikasi Energi Terbarukan Melalui Pengukuran Potensi Angin dengan Metode Analisis Weibull pada Pantai Puger Jember,” pp. 31–34.

      [17] U. S. Dharma, “Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype Turbin Angin Vertical Axis Savonius,” vol. 5, no. 2, pp. 138–148, 2016.

      [18] J. Dinamis, F. Mauritz, D. T. Mesin, F. Teknik, and U. S. Utara, “VERTIKAL AXIS SAVONIUS,” vol. II, no. 12, 2013.


      [20] K. Sopian, M. Y. Othman, B. Yatim, and W. R. W. Daud, “Overview of National Research and Development,” ISESCO Sci. Technol. Vis., vol. 1, pp. 30–36, 2005.

      [21] C. V. Nayar, S. J. Phillips, W. L. James, T. L. Pryor, and D. Remmer, “Novel wind/diesel/battery hybrid energy system,” Sol. Energy, vol. 51, no. 1, pp. 65–78, 1993.

      [22] F. Petrakopoulou, “On the economics of stand-alone renewable hybrid power plants in remote regions,” Energy Convers. Manag., vol. 118, pp. 63–74, 2016.

      [23] S. Feby Agung Pamuji, “Issn : 2302 - 2949 Desain Kontrol Multi – Input Dc – Dc Converter Sistem Hibrid Turbin Angin Dan Sel Surya Menggunakan Kontrol Fuzzy Logic Untuk Tegangan Rendah,” J. Nas. Tek. Elektro Surabaya Vol 4, No.2 Sept. 2015 ISSN, no. 2, pp. 220–226, 2015.

      [24] S. Goel and R. Sharma, “Performance evaluation of stand alone , grid connected and hybrid renewable energy systems for rural application : A comparative review Performance evaluation of stand alone , grid connected and hybrid renewable energy systems for rural application : A comparative review,” Renew. Sustain. Energy Rev., vol. 78, no. November, pp. 1378–1389, 2017.

      [25] M. Gökçek, “Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications,” Desalination, vol. 435, no. July, pp. 210–220, 2018.




Article ID: 27364
DOI: 10.14419/ijet.v7i4.7.27364

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.