Photocatalyst Nanostructured Tio₂ Powder by Using Hydrothermal Method: a Review

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Over the past decades, Titanium dioxide (TiO₂) have been studied extensively that give positive impact to its synthesis and fabrication method that resulting discovery of a simple low-temperature hydrothermal method that makes the nanostructure of TiO₂ easily modified according to the desired application. This paper presents a review of photocatalyst nanostructured TiO₂ by using hydrothermal method as its fabrication method. The TiO₂ powder widely used as a photocatalytic application that mainly for self-cleaning and wastewater treatment.  Rutile phase is stable in the high-temperature region compared to anatase and brookite that metastable in high temperature and photo-catalytic activity, PCA could be enhanced by increasing the number of oxygen. By manipulating the preparation method and thermal treatment, a superior photocatalyst with high surface area and crystallinity which correlated to photocatalytic performance was able to produce. In addition to this, photocatalytic activity of TiO₂ is substantially dependent on the crystal size, specific surface area, crystal defects, charge separation capacity and the interface between the photocatalyst and the molecules.


  • Keywords

    Factor; hydrothermal method; nanostructure TiO₂; photocatalytic application; rutile

  • References

      [1] K. Suriye, P. Praserthdam, B. Jongsomjit, “Control Of Ti3+ Surface Defect On Tio2 Nanocrystal Using Various Calcination Atmospheres As The First Step For Surface Defect Creation And Its Application In Photocatalysis”, Applied Surface Science Vol. 253 (2007), pp 3849-3855.

      [2] A. Fujishima, X. Zhang, D.A. Tryk, “TiO₂ photocatalysis and related surface phenomena”, Surface Science Reports Vol. 63 (2008), pp 515-582.

      [3] Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S. Song, J. Chen, “Photocatalytic activity of TiO₂ containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods”, Journal of Environment Science Vol. 25 (12), (2013), pp 2460-2468.

      [4] X. Shang, B. Li, T. Zhang, C. Li, X. Wang, “Photocatalytic degradation of methyl orange with commercial organic pigment sensitized TiO₂”, Procedia Environmental Sciences, Vol. 18, (2013), pp 478-485.

      [5] G. Yudoyono, N. Ichzan, V. Zharvan, R. Daniyati, H. Santoso, B. Indarto, Y.H. Pramono, M. Zainuri, Darminto, “Effect of calcination temperature on the photocatalytic activity of TiO₂ powders prepared by co-precipitation of TiCl₃”, The international Conference on Advanced Materials Science and Technology, 1725, 020099 (2016); doi: 10.1063/1.4945553.

      [6] X. Zhao, M. Liu, Y. Zhu, “Fabrication of porous TiO₂ film via hydrothermal method and its photocatalytic performances”, Thin Solid Films, 515, (2007), pp 7127-7134.

      [7] L. Min, L. Wei-ming, Z. Lei, Z. Chun-lan, L. Hai-ling, W. Wen-jing, “ Fabrication and photocatalytic properties of flower-like TiO₂ nanostructures”, Trans. Nonferrous Met. Soc. China Vol. 20, (2010), pp 2299-2302.

      [8] Z. Liu, D.D. Sun, P. Guo and J.O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO₂ hollow aggregates by using a low-temperature hydrothermal method without templates”, Chemistry Europe Journal, Vol 13, (2007), pp 1851-1855.

      [9] X. Haifeng, L. Guang, Z. Guang, Z. Kerong, J. Shaowei, “ Enhanced photocatalytic degradation of rutile/anatase TiO₂ heterojunction nanoflowers”, Catalysis Communications, Vol 62, (2015), pp 52-56.

      [10] L. Meicheng, J. Yongjian, D. Ruiqing, S. Dandan, Y. Hang, C. Zhao, “Hydrothermal synthesis of anatase TiO₂ nanoflowers on a nanobelt framework for photocatalytic applications”, Journal of electronic materials, Vol. 42, (2013), pp 1290-1296.

      [11] S. Funda, A. Meltem, S. Sadiye, E. Sema, E. Murat and S. Hikmet, “Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO₂ based catalyst for rhodamine B degradation”, Turkey Journal Chemistry, Vol. 31, (2007), pp 211-221.

      [12] G. Qiang, W. Xiaomei, F. Yueming, Z. Xiya, “Low temperature fabrication nanoflower arrays of rutile TiO₂ on mica particles with enhanced photocatalytic activity”, Journal of alloys and compounds, Vol. 579, (2013), pp 322-329.

      [13] M.K. Ahmad and K. Murakami, “low temperature and normal pressure growth of rutile-phased TiO₂ nanorods/nanoflowers for DSC application prepared by hydrothermal method”, Journal of advanced research in physics, Vol. 3, (2012), pp 1-3.

      [14] H.S. Chen, C.C. Su, J.L. Chen, T.Y. Yang, N.M. Hsu, and W.R. Li, “Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells”, Journal of Nanomaterials, Vol. 2011, Article ID 869618, 8 pages, doi:10.1155/2011/869618

      [15] N.S. Khalid, W.S. WanZaki, and M.K. Ahmad, “Growth of rutile phased titanium dioxide (TiO₂) nanoflowers for Hela cells treatment”, 5th International Conference on Biomedical Engineering in Vietnam, Vol.46, (2015), pp 243-246, DOI: 10.1007/978-3-319-11776-8_59

      [16] P. Hoyer, Formation of titanium dioxide nanotube array, Langmuir, Vol. 12 (1996) 1411–1413.

      [17] J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater, Vol. 14 (2002) 1445–1447.

      [18] J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, “Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach”, J. Phys. Chem. B 109 (2005) 13056–13059.

      [19] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Langmuir, Vol. 14 (1998) 3160–3163.

      [20] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy”, Surf. Interface Anal. , Vol. 27, (1999), pp 629–637.

      [21] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., Vol. 16, (2001), pp 3331–3334.

      [22] O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays”, J. Mater. Res., Vol. 18 (2003), pp 156–165.

      [23] O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Gong, Grimes, “Water-photolysis properties of micro-length highly-ordered titanate nanotubes-arrays”, J. Nanosci. Nanotechnol., Vol. 5, (2005) , pp 1158–1165.

      [24] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, “Titanium oxide nanotubes prepared in phosphate electrolytes”, Electrochem. Commun., Vol. 7, (2005), pp 505–509.

      [25] H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, “Self-organized TiO2 nanotubes prepared in ammonim fluoride containing acetic acid electrolytes”, Electrochem. Commun., Vol. 7, (2005), pp576–580.

      [26] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater. Vol. 11, (1999), pp 1307–1311.

      [27] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, “Preparation and structure analysis of titanium oxide nanotubes”, Appl. Phys. Lett., Vol. 79, (2001), pp 3702–3704.

      [28] Q. Chen,W.Z. Zhou, G.H. Du, L.M. Peng, “Tritanate nanotubes made via a single alkali treatment”, Adv. Mater., Vol. 14, (2002), pp 1208–1211.

      [29] Q. Chen, G.H. Du, S. Zhang, L.M. Peng, “The structure of tritinate nanotubes”, Acta Cryst. B, Vol. 58, (2002), pp587–593.

      [30] S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson,W.Z. Zhou, “Formation mechanism of H2Ti3O7 nanotubes”, Phys. Rev. Lett. Vol. 91, (2003),256103-1:4.

      [31] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2,” Dalton Trans., (2003), pp 3898–3901.

      [32] M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, “Effect of annealing temperature on morphology, structure, and photocatalytic behavior of nanotubed H2Ti2O4(OH)2”, J. Mol. Catal. A., Vol. 217, (2004), pp 203–210.

      [33] S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, Z. Zhang, “Study on ESR and inter-related properties of vacumm-dehydrated nanotube titanic acid”, J. Solid State Chem., Vol. 11, (2004), pp 1365–1371.

      [34] A. Thorne, A. Kruth, D. Tunstall, J.T.S. Irvine,W. Zhou, “Formation, structure, and stability of titanate nanotubes and their proton conductivity”, J. Phys. Chem. B., Vol. 109, (2005), pp 5439–5444.

      [35] C.C. Tsai, H. Teng, “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment”, Chem. Mater., (2004), pp 4352–4358.

      [36] C.C. Tsai, H. Teng, “Structure features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatment”, Chem. Mater. Vol. 18, (2006), pp 367–373.

      [37] J.N. Nian, H. Teng, “Hydrothermal synthesis of single-crystalline anatase. TiO2 nanorods with nanotubes as the precursor”, J. Phys. Chem. B, Vol. 110, (2006), pp 4193–4198.

      [38] C.C. Tsai, J.N. Nian, H. Teng, “Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH”, Appl. Surf. Sci. 253, (2006), pp 1898–1902.

      [39] LINSEBIGLER A L, LU Gap-qing, YATES J T. “Photocatalysis on TiO2 surface: Principles, mechanisms and selected results”, [J].Chem Rev., 95(3), (1995), pp 735−758.

      [40] KUCHIBHATLA S V N T, KARAKOTI A S, BERA D, SEAL C. “One dimensional nanostructured materials” [J]. Prog Mater Sci, Vol. 52, (2007), pp 699−913.

      [41] HUANG Ji-quan, HUANG Zhi, GUO Wang, WANG Mei-li, CAO Yong-ge, HONG Mao-chun. “Facile synthesis of titanate nanoflowers by a hydrothermal route” [J]. Crystal Growth & Design, Vol. 8(7), (2008), pp 2444−2446.

      [42] TOKUDOME H, MIYAUCHI M. “ Electrochromism of titanate-based nanotubes” [J]. Angew Chem Int Ed, Vol. 44(13), (2005), pp 1974−1977.

      [43] WANG Bao-xiang, SHI Yong, XUE Dong-feng. “Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions”, J. Solid State Chem. (2007), 180: pp 1028−1037.

      [44] LUO Yong-song, LI Su-qin, REN Qin-feng, LIU Jin-ping, XING Lan-lan, WANG Yan, YU Ying, JIA Zhi-jie, LI Jia-lin. “Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route”, Cryst Growth Des, Vol. 7(1), (2007), pp 87−92.

      [45] FANG Xiao-sheng, YE Chang-Hui, ZHANG Li-de, ZHANG Jun-xi, ZHAO Jian-wei, YAN Peng., “ Direct observation of the growth process of MgO nanoflowers by a simple chemical route”, Small, Vol. 1(4), (2005), pp 422−428.

      [46] ZHU Jian, WANG Shao-hua, BIAN Zhen-feng, CAI Chen-ling, LI He-xing., “A facile synthesis of hierarchical flower-like TiO2 with enhanced photocatalytic activity”, Res Chem Intermed, Vol. 35, (2009), pp 769−777.

      [47] HU Wan-biao, LI Li-ping, LI Guang-she, TANG Chang-lin, SUN Lang., “High-quality brookite TiO2 flowers: Synthesis, characterization, and dielectric performance”, Cryst Growth Des, Vol. 9(8), (2009), pp 3676−3682.

      [48] D. Gopi, J., Indira, L., Kavitha, M., Sikar, & U.K Modali, “Synthesis of hydroxyapatite nanoparticles by a ultrasonic assisted with mixed hollow sphere template method”, Spectrochemica Acta Part A, 131, (2012).

      [49] Noor Aman & Trilochan Mishra, “Photocatalytic materials and surfaces for environmental cleanup-II Journal of Recent development on titania based mixed oxide photocatalysts for environmental application under visible light”, 196, (2013).

      [50] Funda Sayilkan, Meltem Asilturk, Sadiye Sener, Sema Erdemoglu, Murat Erdemoglu, Hikmet Sayilkan, “Hydrothermal Synthesis, Characterization and Photocatalytic Activity of Nanosized TiO2 Based Catalysts for Rhodamine B Degradation”, pp 211-221.

      [51] P. Calza, C.Minero, E. Pelizzetti, “Photo-catalytic assisted hydrolysis of chlorinated methane in the presence of electron and hole scavangers, Environ. Sci. Technol, (1997).

      [52] Linsebigler, A. L , Lu, G. & Yates, J.T., “Photocatalysis in TiO₂ surfaces: principles, mechanisms & selected results. Chemical reviews, Vol. 95, (1995), pp 735-758.

      [53] Fujishima, A, Rao, T. N & TRYK, D. A., “Titanium dioxide photocatalysis. Journal of photochemistry & photobiology” photochemistry reviews, (2000), pp 1-21.

      [54] Fujishima, A, Zhang, X & TRYK , D.A, “TiO₂ photocatalysis and related surface phenomena”, Surface Science Reports, (2008), pp 515-582.

      [55] C.F. Goodeve and J.A Kitchener., “The mechanism of photosensitisation by solids”, Trans. Faraday Soc., Vol. 34, (1983), pp. 902-908.

      [56] F. Kato and S. Mashio, “Autooxidation by TiO₂ as a photocatalyst”, Abtr. B. Annu. Meet Chem. Soc. Japan., (1956). pp. 223.

      [57] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”. Nature, Vol. 238, no. 5358, (1956), pp. 37-38.

      [58] S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder”, J. Am. Chem. Soc., Vol. 99, no. 1, (1977), pp. 303-304.

      [59] Amy. L., Linsebigler Lu, John. T. Yates. J. “ Photocatalysis on TiO₂ surfaces : principle, mechanisms and selected results”. Chem. Rev 735 – 758.

      [60] Hashimoto, K, Irie, H & Fujishima, A. “TiO₂ Photocatalysis: a historical overview & future prospects”, Japanese Journal Of Applied Physics, (2005), pp 269.

      [61] Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E. & Batzill, M., “Why is anatase a better photocatalyst than rutile? – model studies, on epitaxial TiO₂ films”, Scientific Reports, 4, (2004).

      [62] DI Paola, A. Bellardita, M & Palmisano, L., “Brookite, the least known TiO₂ photocatalyst”, Catalyst, (2013), pp 36-73.

      [63] Zhang, Q., Gao, L & Guo, J. “Effect of calcination on the photocatalytic properties of nanosized TiO₂ powder prepared by TiCl₄ hydrolysis”, Applied catalysis B: environmental, (2000), pp 207-215.

      [64] Kominami, H., Kato, J-I, Murakami, S. Y., Ishii. Y, Kohno, M, Yabutani, K-I, Yamamoto, T., Kera, Y., Inoue, M., Inui T. & Ohtani B., “Solvothermal syntheses of semiconductor photocatalysts of ultrahigh activities”, Catalysis Today, (2003), pp 181-189.

      [65] Maeda, M. & Watanabe, T. “Effect of crystallinity and grain size on photocatalytic activity of titania films”, Surface & Coatings Technology, (2007), pp 9309-9312.

      [66] Lakshmi, S., Renganathan, R & Fujita, S., “Study on TiO₂ - mediated photocatalytic degradation of methylene blue”, Journal of photochemistry & photobiology A: Chemistry, (1995), pp 163-167.

      [67] Burda, C., Lou, Y., Chen, X., Samia, A. C, Stout , J. & Gole, J. L., “Enhanced nitrogen doping in TiO₂ nanoparticles”, Nano letters, (2003), pp1049-1051.

      [68] Fujihira, M., Satoh,Y. & Osa, T., “Heterogeneous photocatalytic oxidation of aromatic compounds on TiO₂, (1981).

      [69] Ashkarran, A. A., Aghigh, S. M.& Farahani, N, J., “Visible light photo-and bioactivity of Ag/ TiO₂ nanocomposite with various silver contents”. Current Applied Physics, (2011), pp1048-1055.

      [70] Jiao, Y., Chew, F., Zhao, B., Yang, H. & Zhang, J., “Anatase grain loaded brookite nanoflower hybrid with superior photocatalytic activity for organic degradation”, Colloids & surfaces A: Physiochemical and Engineering Aspects, (2012), pp 66-71.

      [71] Sreethawong, T., Ngamsinlapasathian, S. & Yoshikawa, S., “Surfactant-aided-sol-gel synthesis of mesoporous- assembled TiO₂-NiO mixed oxide nanocrystals and their photocatalytic azo dye degradation activity”. Chemical Engineering Journal, (2012), pp 292-300.

      [72] Gharagozlou, M. & Bayati, R., “Photocatalytic activity 7 formation of oxygen vacancies in cation doped anatase TiO₂ nanoparticles” Ceramics International, (2014), pp 10247-10253.

      [73] M. H. Samat, A. M. M. Ali, M. F. M. Taib, O. H. Hassan, M. Z. A. Yahya. (2016). Hubbard U calculations on optical properties of 3d transition metal oxide TiO₂. Journal of physics, 891-896.

      [74] Amy. L., Linsebigler Lu, John. T. Yates. J., “Photocatalysis on TiO₂ surfaces : principle, mechanisms and selected results”, Chem. Rev, (1994), pp 735 – 758.

      [75] Serpone. N., Pelizzetti. E., Eds., “Photo-induced electron transfer, Part A : Conceptual basis”. Elsevier ,(1998).

      [76] Gratzel. M., “Heterogeneous photochemical electron transfer”, Conference Press Boca Raton, (1989).

      [77] Rosenwaks. Y., Thackers. B. R., Nozik. A. J., Ellingson. R. J., Burr. K. C., Tang. C. L. J Physics Chemistry. (1994).

      [78] W. Baran, A. Makowski, W. Wardas, “The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence of TiO₂, Dyes”, Pigm. Vol. 76, (2008), pp 226–230.

      [79] Nakata, K & Fujishima, A., “TiO₂ photocatalysis : Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews”, (2012), pp 169-189.

      [80] W. Baran, A. Makowski, W. Wardas, “The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO₂ suspensions”, Chemosphere, Vol. 53, (2003), pp87–95.

      [81] W.Z. Tang, H. An, “UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions”, Chemosphere Vol. 31 ,(1995) , pp 4158–4170.

      [82] W.Z. Tang, H. An, “Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO₂/UV in aqueous solution”, Chemosphere, Vol. 31, (1995), pp 4171–4183.

      [83] I.A. Alaton, I.A. Balcioglu, “Photochemical and heterogeneous photocatalytic degradation ofwaste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5”, J. Photochem. Photobiol. A: Chem. Vol. 141, (2001), pp 247–254.

      [84] D. Grosse, N. Lewis, “Handbook on Advanced Photochemical Oxidation Processes”, Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, US, EPA, Cincinati, USA, 1998.

      [85] I. Poulios, I. Aetopoulou, “Photocatalytic degradation of the textile dye Reactive Orange 16 in the presence of TiO₂ suspensions”, Environ. Technol. Vol. 20, (1999), pp 479 – 487.

      [86] M.A. Fox, M.T. Dulay, “Heterogeneous photocatalysis”, Chem. Rev. Vol. 9, (1993), pp 341.

      [87] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.Richard A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. 88 Sherwood, A. Walsh, A. A. Sokol, “Band alignment of rutile and anatase TiO₂”, Nature Materials, Vol. 12, (2013), pp 798–801.

      [88] Fujishima A, Rao TN, Tryk DA, “Titanium dioxide photocatalysis”, J Photochem Photobiol C, Vol. 1(1), (2000), pp 1–21.

      [89] Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni M, Kajitvichyanukul P, Krishnan-Ayer R, “ Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media”. J Photochem Photobiol C, Vol. 9(4), (2008), pp 171–192.

      [90] Rehman S, Ullah R, Butt AM, Gohar ND, “Strategies of making TiO₂ and ZnO visible light active”. J Hazard Mater 170(2–3), (2009), pp 560–569.

      [91] K.A. Gross, J. Tikkanen, J. Keskinen, V. Pitkänen, M. Eerola, R. Siikamäki, M. Rajala, “Liquid Flame Spraying for glass coloring” Journal of Thermal Spray Technology , Vol. 8, (1999), pp 583–589.

      [92] B. Ohtani, “Photocatalysis A to Z-What we know and what we do not know in a scientific sense”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 11,( 2010), pp 157–178.

      [93] Z. Zhang, J.T. Yates, “Band bending in semiconductors: Chemical and Physical consequences at surfaces and interfaces”, Chemical Reviews 112, ( 2012), pp 5520–5551.

      [94] Sasha M. Klein, Joon Hwan Choi, David. J. Pine, Fred F. Lange, “Synthesis of rutile titania powders: Agglomeration, dissolution, and reprecipitation phenomena”, J. Mater. Res., Vol. 18, No. 6, (2003).

      [95] Xuelian Bai, Bin Xie, Nan Pan, Xiaoping Wang, Haiqian Wang, “Novel three-dimensional dandelion-like TiO₂ structure with high photocatalytic activity”, Journal of solid state chemistry, Vol.181, (2008), pp 450-456.

      [96] Evyan Yang Chia Yan, Sarani Zakaria, Chin Hua Chia, “One-step synthesis of titanium oxide nanocrystal-rutile by hydrothermal method”, AIP Conference Proceedings 1614, (2014), pp 122-128.




Article ID: 25977
DOI: 10.14419/ijet.v8i1.7.25977

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.