Populus Tremula Plants with Reduced Expression of the 4-Coumarate-CoA Ligase Gene Demonstrate Defects of the Rhizogenesis

  • Authors

    • Yu. A.Kovalitskaya
    • N. P.Kovalenko
    • K. A.Shestibratov
    2018-12-09
    https://doi.org/10.14419/ijet.v7i4.36.25374
  • Populus Tremula, 4-Coumarate-CoA Ligase, Gene, Rhizogenesis, plant
  • Changing expression of a single gene by introducing mutations or transformation often affects expression of other genes, which results in the modification of the plant phenotype. We have obtained aspen plants with reduced expression levels of 4CL gene (4-coumarate-CoA ligase). Change in qualitative composition and 11-23% reduced lignin content were observed in the wood of the greenhouse plants. In the study of rhizogenesis in vitro it was found that the micro shoots of transgenic plants formed a greater number of adventive roots than in the control, 30%. Studying the transgenic aspen plants grown in a greenhouse (3 months) and passed the semi-natural conditions trial (4 months) has revealed 5-10% reduction in the lignin content, alteration of the phenotype – decrease in biometrical values (height and diameter of stem). Analysis of RNA from the plants grown under semi-natural  conditions indicated changed expression levels of monolignol biosynthesis genes, 4CL, CCR1 (cinnamoyl-CoA reductase), CAD6 (cinnamyl-alcohol dehydrogenase), and CCoAOMT (caffeoyl-CoA O-methyltransferase). For the lines PtXVI4CL9a and PtXIII4CL2c grown under semi-natural conditions, weight of the root system was 1.5-2 fold reduced in the transgenic plants as compared to the control. The conductive: feeding root ratio was increased. Morphology of the root system was changed.

     

  • References

    1. [1] Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé JC, Pollet B, Mila I, Webster EA, Marstorp HG, et al. Field and pulping performances of transgenic trees with altered lignification.//Nat Biotechnol. 2002. V. 20. Р. 607–612.

      [2] Anterola AM, Lewis NC. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulation/mutations on lignification and vascular integrity // Phytochemistry. 2002. V. 61. â„–3. P 221-294.

      [3] Vanholme R., Storme V., Vanholme V., Sundin L., Christensen J.-H., Goeminne G., Halpin C., Rohde A., Morreel K., and Boerjana W. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. // The Plant Cell. 2012. V. 24. P. 3506–3529.

      [4] Wagner A., Donaldson L., Kim H., Phillips L., Flint H., Steward D., Torr K., Koch G., Schmitt U.,Ralph J. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata // Plant Physiol. 2009. V. 149. P. 370–383.

      [5] Hu W-J., Kawaoka A., Tsai C-J., Lung J., Osakabe K., Ebinuma H., Chiang V. L. // Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides) // Plant Biology. 1998. V. 95. P. 5407 – 5412.

      [6] Hu W-J., Harding S. A., Lung J., Popko J. L., Ralph J., Stokke D. D., Tsai C-J., Chiang V. L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees // Nature biotechnology. 1999. V. 17. P. 808 – 812.

      [7] Voelker S. L., Lachenbruch B., Meinzer F. C., Jourdes M., Ki C., Patten A. M., Davin L. B., Lewis N. G., Tuskan G. A., Gunter L., Decker S. R., Selig M. J., Sykes R., Himmel M. E., Kitin P., Shevchenko O., Strauss S. H. Antisense Down-Regulation of 4CL Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar // Plant Physiology. 2010. V. 154. P. 874 – 886.

      [8] Voelker S. L., Lachenbruch B., Meinzer F. C., Kitin P., Strauss S. Transgenic poplars with reduced lignin show impared xylem conductivity, growth efficiency and surval. // Plant Cell Environ. 2011. V. 34. P. 655-68.

      [9] Li L., Zhou Y., Cheng X., Sun J., Marita J. M., Ralph J., Chiang V. L. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation // PNAS. 2003. V. 100. P. 4939 – 4944.

      [10] Kovalitskaya Yu. , Dayanova L., Azarova A. and Shestibratov K. RNA Interference-Mediated Down-Regulation of 4- Coumarate: Coenzyme A Ligase in Populus Tremula Alters Lignification and Plant Growth // International journal of environmental & science education. 2016. V. 11. â„– 18. P. 12259-12271.

      [11] Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. // Plant Cell. 2007. V 19. № 11.P:3669-91.

      [12] Kajita, S., Katayama, Y., and Omori, S. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase // Plant Cell Physiol. 1996. V. 37. P. 957–965.

      [13] Kajita, S., Hishiyama, S., Tomimura, Y., Katayama, Y., and Omori, S. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate: coenzyme A ligase is depressed // Plant Physiol. 1997. V. 114. P. 871– 879.

      [14] Simon J.T., Lewis L., Lopes-Gonzalez G. et all. Methods to estimate aboveground wood productivity from long-term forest inventory plots // Forest Ecology and Management. 2014. V. 320. P. 30-38.

      [15] Rahaman M., Chen D.,Gillani Z.,Klukas Ch.,ChenM. Advanced phenotyping and phenotype data analysis for the study of plant growth and development // Front Plant Sci. 2017. V. 8: P. 1617.

      [16] Jung J.K.H and McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture // Front Plant Sci. 2013 V. 4: P.186.

      [17] Peukert J.M., Succurro A., Koprivova A. and Kopriva S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions Richard // Front Plant Sci. 2017. V. 8: P. 1617.

      [18] Lloyd, G.; McCown, B.,Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture // Combined Proceedings, International Plant Propagators' Society. ‒ 1981. ‒ V. 30. ‒ P. 421-427.

      [19] Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Cultures. // Physiol. Plant. 1962. V. 15. P. 473–497.

      [20] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) // Method. Methods. Vol. 25. San Diego, CA: 2001 pp. 402–408.

      [21] Kruskal W. H., Wallis W. A. Use of ranks in one-criterion variance analysis. // Journal of the American Statistical Association. 1952. V. 47. № 260. P. 583–621.

      [22] Jinmi Yoon, Heebak Choi1 and Gynheung An. Roles of lignin biosynthesis and regulatory genes in plant development // Journal of Integrative Plant Biology. 2015. V. 57. â„– 11. P. 902-912.

      [23] Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. // Proc Natl Acad Sci USA 1990. V. 87. P. 9057–9061.

      [24] Song J, Wang Z . RNAi-mediated suppression of the phenyl-alanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. // J Plant Res. 2011. V. 124. P. 193–192.

      [25] Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet A. Downregulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. // Plant J. 1998. V. 13. P. 71–83.

      [26] Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30: 47–59

      [27] Tian XM, Xie J, Zhao YL, Lu H, Liu SC, Qu L, Li JM, Gai Y, Jiang XN. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr. // Plant Physiology and Biochemistry. 2013. V. 65. P. 111-119.

      [28] Meng-Zhu Lu and Jian-Jun Hu. A brief overview of field testing and commercial application of transgenic trees in China // BMC Proc. 2011. V.5. P. 063.

      [29] Xu Li, Nicholas D. Bonawitz, Jing-Ke Weng,1 and Clint Chapple. The Growth Reduction Associated with Repressed Lignin Biosynthesis in Arabidopsis thaliana Is Independent of Flavonoids // The Plant Cell. 2010. V. 22. P. 1620–1632.

  • Downloads

  • How to Cite

    A.Kovalitskaya, Y., P.Kovalenko, N., & A.Shestibratov, K. (2018). Populus Tremula Plants with Reduced Expression of the 4-Coumarate-CoA Ligase Gene Demonstrate Defects of the Rhizogenesis. International Journal of Engineering & Technology, 7(4.36), 1139-1144. https://doi.org/10.14419/ijet.v7i4.36.25374