Cobalt (II) and Nickel (II) Complexes with Schiff Base Ligand Derived From 4-Amino Antipyrine: Synthesis, Spectral, Characterization and Thermal Studies
DOI:
https://doi.org/10.14419/ijet.v7i4.37.24100Published:
2018-12-13Keywords:
4-aminoantipyrine, Cobalt, Nickel, tetradentate, TGA.Abstract
Metal complexes of the Schiff base ligand, synthesized via condensation p-dimethylamino benzaldehyde with Bis (4-aminoantipyrine) benzene 1, 4-diamine which has synthesized from condensation 1, 4-phenylene diamine and 4-aminoantipyrine, are synthesized from chloride salts of Co (II) and Ni(II) with ligand in ethanol. The metal complexes and ligand are characterized on the basis of elemental analyses, melting point, molar conductance, UV –Visible, FTIR and thermogravimetric analysis. The molar conductance data reveal that the metal chelates of the ligand with Co (II) and Ni (II) are electrolytes. The present results suggested that the Schiff base ligand as tetradentate is coordinated with metal ions through the four nitrogen atoms.
References
[1] Abu-Dief, A. M., & Nassr, L. A. (2015). Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu (II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. Journal of the Iranian Chemical Society, 12(6), 943-955.
[2]
[3] Arunadevi, A., & Raman, N. (2018). Biological contour, molecular docking and antiproliferative studies of DNA targeted histidine based transition metal (II) complexes: Invention and its depiction. Applied Organometallic Chemistry.â€
[4] Das, P., & Linert, W. (2016). Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coordination Chemistry Reviews, 311, 1-23.â€
[5] El-Ghar, M. F., Abdel-Ghani, N. T., Badr, Y., & El-Boraady, O. M. (2007). Synthsis, Spectroscopic and Thermal Studies of Co (II), Ni (II), Cu (II), Zn (II), Cd (II) and Hg (II) with Arylazo Derivatives of 5-amino Pyrazole, ISESCO. Science and Technology Vision, 3, 58-63.â€
[6] El-Sonbati, A. Z., Diab, M. A., El-Bindary, A. A., Abou-Dobara, M. I., & Seyam, H. A. (2013). Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 213-221.â€
[7] Gupta, 1. K., & Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252(12-14), 1420-1450.â€
[8] Gupta,N.K.,Verma,C.,Quraishi, M. A., & Mukherjee, A. K. (2016). Schiff's bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: experimental and theoretical studies. Journal of Molecular Liquids , 215, 47-57.â€
[9] Geary,W.J. 1971. Characterization of Coordination Compounds, Coord.Chem.Rev., 7,81-122.
[10] Kettle,S.F.A., (1975), “coordination compounds†Thomas Nelson and son, London, P. 165.
[11] Lever ABP., (1968),Inorganic Electronic Spectroscopy. Elsevier Publishing Company Inc 224: 246-247.
[12] Liu, X., Manzur,C.,Novoa,N.,Celedón,S.,Carrillo,D., & Hamon, J. R. (2018). Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 357, 144-172.â€
[13] Manjula,B.,Antony,S.A.,&Dhanaraj,C.J.(2014).Synthes -is,spectral characterization, and antimicrobial acti -veties of schiff base complexes derived from 4-amin -oantipyrine. Spectroscopy letters,47(7),518-526.â€
[14] O. A. El-Gammal, G. M. A. El-Reash, T. A. Yousef, and M. Mefreh,(2015),Molecular and Biomolecular Spectroscopy, Vol. 146, pp. 163–176.
[15] Osowole,A.A. 2008. Synthesis and characterization of some tetradentate Schiff base complex and their heteroleptic analogues, E-J.Chem., 5,130-135.
[16] Vlad, A., Avadanei, M., Shova, S., Cazacu, M., & Zaltariov, M. F. (2018). Synthesis, structural characterization and properties of some novel siloxane-based bis-Schiff base copper (II), nickel (II) and manganese (II) complexes. Polyhedron, 146, 129-135.â€
[17] Pallikavil,R.,Umnathur,M.B and Krishnankuty,K. 2012. Schiff bases tetrephthaladehyde with 2-aminophenol and 2-aminothiophenol and their metal complexes, Arch.Appl.Sci.Res., 4,223-2227.
[18] R.M. Silverstein, F.X. Webster and D.J. Kiemle, (2005), Spectrometric Identification of organic compounds , 7th Ed., John Wiley& Sons., New York Univ., 153-154.
[19] Shiju, C., Arish, D., Bhuvanesh, N., & Kumaresan, S. (2015). Synthesis, characterization, and biological evaluation of Schiff base–platinum (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 213-222.â€
[20] SHAH, S., VYAS, R., & Mehta, R. H. (1993). Synthesis, Characterization, and Antibacterial Activities of Some New Schiff Base Compounds. ChemInform, 24(51).â€
[21] Zayed, E. M., Mohamed, G. G., Hassan, W. M., Elkholy, A. K., & Moustafa, H. (2018). Spectroscopic, thermal, biological activity, molecular docking and density functional theoretical investigation of novel bis Schiff base complexes. Applied Organometallic Chemistry, e4375.
How to Cite
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Licensethat allows others to share the work with an acknowledgement of the work''s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal''s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Accepted 2018-12-16
Published 2018-12-13