Numerical Investigations on Fluid Flow and Solidification Behavior during Impact of a Hollow Molten Droplet on a Solid Substrate

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In thermal spraying coating process, powder materials are melted and driven towards the substrate’s surface. This process involves impact of liquid droplet and its solidification. In the past studies it has been reported that central counter jet present in the hollow droplet impact on substrate. This counter jet affects total solidification time of splat and spreading pattern. The objective of the present work is to develop a two dimensional CFD model to investigate the effect of surface roughness during spreading and solidification of molten ZrO2 hollow droplet impacting on a substrate of Stainless steel. The governing equations for fluid flow are solved numerically using a pressure-based finite volume method, following the SIMPLE algorithm presented by Patankar (1980). To track droplet THINC/WLIC method is used which is a VOF (Volume of Fluid) type method. To model surface tension force, the CSF (continuum surface flow) model is used. Enthalpy-based formulation is used to solve energy equation.


  • Keywords


    Hollow droplet impact; solidification

  • References


      [1] S.D. Aziz, S. Chandra, Impact, Recoil and Splashing of Molten Metal Droplets, Int. J. Heat Mass Transfer 43 (2000) 2841.
      [2] S. Shakeri, S. Chandra,Splashing of molten tin droplets on a rough steel surface, Int. J. Heat Mass Transfer 45 (2002) 4561.
      [3] S. Kamnis, S. Gu,Numerical modelling of droplet impingement, J. Phys. D: Appl. Phys. 38 (2005) 3664.
      [4] S. Kamnis, S. Gu, T.J. Lu, C. Chen, Numerical modelling of sequential droplet impingements, J. Phys. D: Appl. Phys. 41 (2008) 165303 (7 pp.).
      [5] H. Tabbara, S. Gu, Modelling of impingement phenomena for molten metallic droplets with low to high velocities, Int. J. Heat Mass Transfer 55 (2012) 2081. [6] H. Safaei and M. EmamiNumerical comparison between the impact of a completely molten and a semi-molten hollow droplet on a surface MME 2017, 17(8): 267-278.
      [7] D Li, X Duan, Z Zheng, and Y Liu, Dynamics and heat transfer of a hollow droplet impact on a wetted solid surface, International Journal of Heat and Mass Transfer122, (2018) 1014-1023.
      [8] A Kumar, Sai Gu, S Kamnis, Simulation of impact of a hollow droplet on a flat surface, ApplPhys A (2012) 109:101–109.
      [9] A Kumar, Sai Gu, H Tabbara, S Kamnis, Study of impingement of hollow ZrO2 droplets onto a substrate, Surface & Coatings Technology 220 (2013) 164–169.
      [10] O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles, Tech. Phys. Lett. 34 (2008) 1050.
      [11] K. Shinoda, H. Murakami, Splat Morphology of Yttria-Stabilized Zirconia Droplet Deposited Via Hybrid Plasma Spraying, J. Therm. Spray Technol. 19 (2010) 602.
      [12] M.P. Planche, S. Costil, C. Verdy, C. Coddet, Different spray processes for different Al2O3 coating properties, Appl. Phys. A: Mater. Sci. Process. 99 (2010) 665.
      [13] S. Kamnis, S. Gu, M. Vardavoulias, Numerical Study to Examine the Effect of Porosity on In-Flight Particle Dynamics, J. Therm. Spray Technol. 20 (2011) 630.
      [14] S. Sampath, X.. Jiang, J. Matejicek, A.. Leger, A. Vardelle, Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia, Mater. Sci. Eng. A. 272 (1999) 181–188.
      [15] S. Kamnis, S. Gu, Numerical modelling of droplet impingement, J. Phys. D. Appl. Phys. 38 (2005) 3664–3673.
      [16] N. Pathak, A. Kumar, A. Yadav, P. Dutta, Effects of mould filling on evolution of the solid-liquid interface during solidification, Appl. Therm. Eng. 29 (2009) 3669–3678.
      [17] W.D. Bennon, F.P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation, Int. J. Heat Mass Transf. 30 (1987) 2161–2170.
      [18] Ubbink, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions,Ph.D Thesis, Imperial College of Science, Technology and Medicine, London, 2002.
      [19] M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids. 8 (1996) 650–659.
      [20] M. Pasandideh-Fard, J. Mostaghimi, On the spreading and solidification of molten particles in a plasma spray process : effect of thermal contact resistance, Plasma Chem. Plasma Proccssing. 16 (1996) 83–98.
      [21] M. Xue, Y. Heichal, S. Chandra, J. Mostaghimi, Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance, J. Mater. Sci. 42 (2007) 9–18.
      [22] M. Pasandideh-Fard, M. Qiao, S. Chandra, and J. Mostaghimi, Capillary Effects During Droplet Impact on a Solid Surface, Phys. Fluids.8(3) (1996) 650-659.
      [23] A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. Heat Transf. 13 (1988) 297–318.
      [24] H. Zhang, X.Y. Wang, L.L. Zheng, S. Sampath, Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying, Int. J. Heat Mass Transf. 47 (2004) 2191–2203.
      [25] H. Zhang, X.Y. Wang, L.L. Zheng, X.Y. Jiang, Studies of splat morphology and rapid solidification during thermal spraying, Int. J. Heat Mass Transf. 44 (2001) 4579–4592.
      [26] M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, D. Gobin, Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes, J. Therm. Spray Technol. 4 (1995) 50–58.
      [27] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
      [28] I.P. Gulyaev, O.P. Solonenko, P.Yu. Gulyaev, A.V. Smirnov, Hydrodynamic features of the impact of a hollow spherical drop on a flat surface, Tech. Phys. Lett. 35, 885 (2009).
      [29] K. Shinoda, M. Raessi, J. Mostaghimi, T. Yoshida, H. Murakami, Effect of Substrate Concave Pattern on Splat Formation of Yttria-Stabilized Zirconia in Atmospheric Plasma Spraying, J. Therm. Spray Technol. 18 (2009) 609.
      [30] H. Tabbara, S. Gu, Numerical study of semi-molten droplet impingement, Appl. Phys. A: Mater. Sci. Process. 104 (2011) 1011.s


 

View

Download

Article ID: 23946
 
DOI: 10.14419/ijet.v7i4.39.23946




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.