Band Gap Modification of Tio2 Using Solid State Reaction with Hydrides in Argon Atmosphere

  • Authors

    • Saad Sh. Al-Omary
    • Laith A. Algharagholy
    • Mohsin E. Al-Dokheily
    2018-12-09
    https://doi.org/10.14419/ijet.v7i4.36.23804
  • TiO2, band gap, reduction, solid state, DFT, SIESTA
  • TiOx (x<2) nanoparticles have been synthesized by solid state reaction between as-prepared TiO2 nanoparticles and NaAlH4, KBH4 as a reducing agents in argon atmosphere at two temperature 600 oC and 850 oC .  the X-ray diffraction patterns of reduced TiO2 shows a peak shift and broadening which attributed to the lattice contraction after reduction treatment. AFM images confirm that the surface roughness of reduced TiO2 were larger than unmodified TiO2 nanoparticles due to the formation of oxygen vacancies. UVâ€Vis spectroscopy measurements revealed that the reduced TiO2 nanoparticles have an absorption edge lies in the visible region from the electromagnetic radiations with lower band gap. EDS spectra indicate that the as-prepared and reduced TiO2 nanoparticles have a high degree of purity and the acquired results confirm formation nonstoichiometric (TiO2-x) with oxygen deficient.

     

     

     

  • References

    1. [1] J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2by coexposed {0 0 1} and {1 0 1} facets,J. Am. Chem. Soc. 136 (2014) pp.8839–8842.

      [2] A.A. Ashkarran, H. Hamidinezhad, H. Haddadi, M. Mahmoudi, Double-dopedTiO2nanoparticles as an efficient visible-light-active photocatalyst andantibacterial agent under solar simulated light, App. Surf. Sci. 301 (2014) pp.338–345.

      [3] J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2nanostructured surfaceheterostructures: a review, Chem. Soc. Rev. 43 (2014) pp.6920–6937.

      [4] A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali,M. D'Arienzo, S. Polizzi, R. Scotti and F. Morazzoni, Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. a systematic approach., J. Am.Chem. Soc., (2007),pp.129, 3564.

      [5] J. Su, X. Zou, G.-D. Li, Y.-M. Jiang, Y. Cao, J. Zhao and J.-S. Chen, Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst., Chem. Commun., (2013), pp.49, 8217.

      [6] J. Pan, G. Liu, G. Q. Lu and H. M. Cheng, On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals, Angew. Chem., Int.Ed., (2011),pp. 50, 2133.

      [7] X. Zou, R. Silva, X. Huang, J. F. Al-Sharab and T. Asefa, A self cleaning porous TiO2-Ag core-shell nanocomposite material for surface enhanced Raman scattering, Chem. Commun., (2013),pp. 49, 382.

      [8] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith,H. M. Cheng and G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets ,Nature, (2008),pp.453, 638.

      [9] L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues withversatile functionalities, Chem. Rev. 114 (2014) pp.9455–9486.

      [10] Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production, J. Mater. Chem. A 2 (2014) pp.3847–3855.

      [11] R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik, Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation Int. J. Hydrogen Energy 34, (2009) pp.3621-3630.

      [12] D. C. Cronemeyer, Infrared Absorption of Reduced Rutile TiO2 Single Crystals, Phys. ReV. 113(1959) 1222.

      [13] Designed Self-Doped Titanium Oxide Thin Films for Efficient Visible-Light Photocatalysis, I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedes, G. A. Battiston, R. Gerbasi, A. Figueras, AdV. Mater. (2002) pp.14, 1399

      [14] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under ,J. Am. Chem. Soc. 132(2010) pp.11856– 11857 .

      [15] Z. Zheng, B. Huang, X. Meng, J. Wang, S. Wang, Z. Lou,Z. Wang, X. Qin, X. Zhang and Y. Dai, Metallic zinc-assisted synthesis of Ti 3+ self doped TiO 2 with tunable phase composition and visible-light photocatalytic activity, Chem. Commun., (2013) pp.49, 868.

      [16] F. N. Sayed, O. D. Jayakumar, R. M. Kadam, S. R. Bharadwaj,L. Kienle, U. Sch¨urmann, S. Kaps, R. Adelung, J. P. Mittal andA. K. Tyagi, Photochemical Hydrogen Generation Using Nitrogen-Doped TiO2–Pd Nanoparticles: Facile Synthesis and Effect of Ti3+ Incorporation, J. Phys. Chem. C, (2012) pp.116, 12462.

      [17] C. Yang, Z. Wang, T. Lin, H. Yin, X. Lu, D. Wang, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie and M. Jiang, Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping, J. Am.Chem. Soc., (2013) pp.135, 17831.

      [18] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu and J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting, J. Mater.Chem. A, (2013) pp. 1, 5766.

      [19] X. Zou, J. Liu, J. Su, F. Zuo, J. Chen and P. Feng, Facile Synthesis of Thermal- and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis ,Chem. – Eur.J., (2013) pp.19, 2866.

      [20] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, Self Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light,J. Am. Chem. Soc., (2010) pp.132, 11856.

      [21] N. Liu, V. Haublein, X. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic,T. Nakajima, E. Spiecker, A. Osvet, L. Frey, P. Schmuki, “Black†TiO2 nanotubes formed by high-energy proton implantation show Noble-metal-co-catalyst free photocatalytic H2-evolution, Nano Lett. 15 (2015) pp. 6815–6820.

      [22] S.G. Ullattil, P. Periyat, A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2 - x solar photocatalyst, J. Mater. Chem. A 4 (2016) pp.5854–5858.

      [23] J.H. Pan, Z.Y. Cai, Y. Yu, X.S. Zhao, Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis, J. Mater. Chem. 21(2011) pp. 11430.

      [24] X. Chen, L. Liu, Z. Liu, M. A. Marcus, W. Wang, N. A. Oyler, M. E. Grass, B. Mao, P. Glans, P. Y. Yu, J. Guo, S. S. Mao, Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation, Scientific Reports,3(2013) pp.1510â€.

      [25] W. Wang, Y. Ni, C. Lu and Z. Xu, hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity, RSC Adv., 2(2012) pp. 8286.

      [26] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang J. Lin, X. Xiec, M. Jiangc, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania, Energy Environ. Sci., 6(2013) pp. 3007.

      [27] Y. Jiang, F. Li, Y. Liu, Y. Hong, P. Liu, L. Ni, Construction of TiO2 hollow nanosphere/g -C3N4 composites with 2 superior visible-light photocatalytic activity and mechanism insight, Ind. Eng. Chem. Res. 41(2016) pp.130-141.

      [28] X.Y. Pan, M.-Q. Yang, X.Z. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale, 5 (2013) pp.3601–3614.

      [29] B. Bharti, S. Kumar, H.-N. Lee and R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin lm and enhanced optical properties by air plasma treatment, Sci. Rep.,6 (2016) pp.32355.

      [30] V. Gurylev, C.Y. Su and T.P. Perng, Surface reconstruction, oxygen vacancy distribution and photocatalytic activity of hydrogenated titanium oxide thin film, Journal of Catalysis, 330 (2015) pp.177–186.

      [31] M. W. Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, C. Wang, Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis, Scientific reports 5, (2015) pp.15804.

      [32] Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14,11 (2002) pp.2745. â€

      [33] Yang, K., Dai, Y., & Huang, B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The journal of physical chemistry C, 111(32). (2007). pp.12086-12090.â€

      [34] Wan, L., Li, J. F., Feng, J. Y., Sun, W., & Mao, Z. Q. Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation. Materials science and engineering: B, 139(2-3), (2007) pp.216-220.â€

      [35] Zhang, Y. F., Lin, W., Li, Y., Ding, K. N., & Li, J. Q. A Theoretical Study on the Electronic Structures of TiO2: Effect of Hartree− Fock Exchange. The Journal of Physical Chemistry B, 109,41 (2005) pp.19270-19277.â€

      [36] Glassford, K. M., & Chelikowsky, J. R. Structural and electronic properties of titanium dioxide. Physical Review B, 46,3 (1992) pp.1284.â€

      [37] Yang, K., Dai, Y., Huang, B., & Whangbo, M. H. Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chemistry of Materials, 20,20 (2008) pp.6528-6534.â€

      [38] Su, R., Tiruvalam, R., He, Q., Dimitratos, N., Kesavan, L., Hammond, C., ... & Besenbacher, F. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles. ACS nano, 6,7 (2012) pp.6284-6292.â€

      [39] Janotti, A., Varley, J. B., Rinke, P., Umezawa, N., Kresse, G., & Van de Walle, C. G. Hybrid functional studies of the oxygen vacancy in TiO 2. Physical Review B, 81,8 (2010) pp.085212.â€

  • Downloads

  • How to Cite

    Sh. Al-Omary, S., A. Algharagholy, L., & E. Al-Dokheily, M. (2018). Band Gap Modification of Tio2 Using Solid State Reaction with Hydrides in Argon Atmosphere. International Journal of Engineering & Technology, 7(4.36), 354-362. https://doi.org/10.14419/ijet.v7i4.36.23804