Spatial Variation and Possible Sources Assessment at Federal Territory of Kuala Lumpur Water Treatment Plan Using Chemometric Technique

  • Authors

    • H. M. Zolkipli
    • H. Juahir
    • G. Adiana
    • N. Zainuddin
    • A. B.H.M. Maliki
    • S. Z. Mohamed
    • W. N.W. A. Halim
    • N. F. Sa’adon
    • N. S. Mohamed
    • N. A.A. Hashim
    2018-12-13
    https://doi.org/10.14419/ijet.v7i4.34.23583
  • Drinking water quality, Water treatment plants, Heavy metals and organic parameter, Principle component analysis, Discriminant analysis.
  • This study aims to identify the possible sources in drinking water parameters heavy metal and organic parameters (HMOPs) and spatial variation between untreated water and treated water at Federal Territory of Kuala Lumpur water treatment plant. The indicator HMOPs in drinking water in Kuala Lumpur were selected as parameters to discriminate the possible source of water treatment plants (WTPs) pollutant. Chemometric technique such as principal component analysis (PCA) and discriminant analysis (DA) was identified based on the five years’ availability data starting from 2012 to 2016. PCA were used to identify the most significant parameters which are highlighted eleven strong factors loading of parameter respectively out of sixteen for PCs and classified as possible sources in WTPs. Continue with DA analysis that is successful distinguish two categories region in WTP using the forward stepwise and backward stepwise with significant amount is 98.46%. From this study, we can conclude that this chemometric is the best technique of analysis to get a lot of information such as identify possible sources of pollutant and discriminant of two station sampling categories that will give novelty to Malaysian Ministry of Health (MOH) and collaboration agency in National Drinking Water Quality Surveillances Program (NDWQSP).

     

     

     
  • References

    1. [1] Bartram, J. (2009). Water safety plan manual: Step-by-step risk management for drinking-water suppliers. World Health Organization.

      [2] Yaziz, M. I., Gunting, H., Sapari, N., & Ghazali, A. W. (1989). Variations in rainwater quality from roof catchments. Water Research, 23(6), 761-765.

      [3] Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 42(13), 3285-3304

      [4] Bunnell, T., Barter, P. A., & Morshidi, S. (2002). Kuala Lumpur metropolitan area: A globalizing city–region. Cities, 19(5), 357-370.

      [5] Sofilic, T. Ekotoksikologija. http://bib.irb.hr/datoteka/743709.Tahir_Sofilic_EKOTOKSIKOLOGIJA.pdf.

      [6] Amić, A., & Tadić, L. (2018). Analysis of basic physical-chemical parameters, nutrients and heavy metals content in surface water of small catchment area of KaraÅ¡ica and VuÄica Rivers in Croatia. Environments, 5(2), 1-27.

      [7] Rieuwerts, J. (2015). The elements of environmental pollution. Routledge.

      [8] Rizak, S., & Hrudey, S. (2008). Drinking-water safety challenges for community managed systems. Journal of Water Health, 6, 33-41.

      [9] Bunnell, T., Barter, P., & Morshidi, S. (2002). Kuala Lumpur metropolitan area. A globalizing city-region. Cities, 19(5), 357-370.

      [10] Federal Territory of Kuala Lumpur. Department of Statistics, Malaysia.

      [11] Malaysia Ministry of Health report, 2016.

      [12] Osman, R., Saim, N., Juahir, H., & Abdullah, M. P. (2012). Chemometric application in identifying sources of organic contaminants in Langat river basin. Environmental Monitoring and Assessment, 184(2), 1001-1014.

      [13] Vialle, C., Sablayrolles, C., Lovera, M., Jacob, S., Huau, M. C., & Montréjaud-Vignoles, M. (2011). Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water Research, 45(12), 3765-3775.

      [14] Tadesse, D., Desta, A., Geyid, A., Girma, W., Fisseha, S., & Schmoll, O. (2010). Rapid assessment of drinking water quality in the federal democratic republic of Ethiophia: Country report of the pilot project implementation in 2004-2005. World Health Organization and United Nations Children’s Fund.

      [15] Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evaluation of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807-816.

      [16] Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Jurnal of Sustainable Development, 32, 3581-3592

      [17] Kamaruddin, A. F., Toriman, M. E., Juahir, H., Zain, S. M., Rahman, M. N. A., Kamarudin, M. K. A., & Azid, A. (2015). Spatial characterization and identification sources of pollution using multivariate analysis at Terengganu river basin, Malaysia. Jurnal Teknologi, 77(1), 269-273.

      [18] Juahir, H., Zain, S. M., Aris, A. Z., Yusof, M. K., Samah, M. A. A., & Mokhtar, M. (2010). Hydrological trend analysis due to land use changes at Langat River Basin. Environment Asia, 3, 20-31.

      [19] Maliki, A. B. H. M., Abdullah, M. R., Juahir, H., Muhamad, W. S. A. W., Nasir, N. A. M., Musa, R. M., Mat-Rasid, S. M., Adnan, A., Kosni, N. A., Abdullah, F., & Abdullah, N. A. S. (2018). The role of anthropometric, growth and maturity index (AGaMI) influencing youth soccer relative performance. IOP Conference Series: Materials Science and Engineering, 342(1), 1-10.

      [20] Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classificationand assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582, 390–399.

      [21] Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam, C. N. C., Aziz, N. A., Azaman, F., Latif, M. T., Zainuddin, S. F., & Osman, M. R. (2014). Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water, Air, and Soil Pollution, 225(8), 2063.

      [22] Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring Assessment, 173, 625–641.

      [23] Ismail, A., Toriman, M. E., Juahir, H., Md. Kassim, A., Md Zain, S., Ahmad, W. K. W., Fah, W. K., Retnam, A., Abdul Zali, M., Mokhtar, M., & Yusri, M. A. (2016). Chemometric techniques in oil classification from oil spill fingerprinting. Marine Pollution Bulletin, 111(1-2), 339-346.

      [24] Ismail, A., Toriman, M. E., Juahir, H., Md Zain, S., Abdul Habir, N. L., Retnam, A., Kamaruddin, M. K. A., Umar, R., & Azid, A. (2016). Spatial assessment and source identification of heavymetals pollution in surface waterusing several chemometric techniques. Marine Pollution Bulletin, 106(1), 292-300.

      [25] Maliki, A. B. H. M., Abdullah, M. R., Juahir, H., Abdullah, F., Abdullah, N. A. S., Musa, R. M., Mat-Rasid, S. M., Adnan, A., Kosni, N. A., Muhamad, W. S., & Nasir, N. A. M. (2018). A multilateral modelling of Youth Soccer Performance Index (YSPI). IOP Conference Series: Materials Science and Engineering, 342(1), 1-10.

      [26] National Research Council. (1999). Arsenic in drinking water. National Academies Press.

      [27] No, W. F. S. (2000). Arsenic in drinking water. http://www.bvsde.ops-oms.org/bvsacd/who/watero.pdf.

      [28] Skipton, S., Dvorak, B., Woldt, W., & Kahle, A. (2008). G08-1376 Drinking Water: Fluoride. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=3792&context=extensionhist.

      [29] World Health Organization (WHO). (2009). Calcium and magnesium in drinking-water: Public health significance. WHO.

      [30] Beech, J. A., Diaz, R. A. Y. M. O. N. D., Ordaz, C., & Palomeque, B. (1980). Nitrates, chlorates and trihalomethanes in swimming pool water. American Journal of Public Health, 70(1), 79-82.

      [31] Lisha, K. P., Pradeep, A., & Pradeep, T. (2009). Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bulletin, 42(2), 144-152.

      [32] Emsley, J. (2011). Nature's building blocks: An A-Z guide to the elements. Oxford University Press.

      [33] Rieuwerts, J. H. (2015). Coal mining on the peak district's eastern uplands during the 16th to early-20th centuries. Mining History, 19(4), 2022-2036.

      [34] Dixon, P. M. (2002). Nearest neighbor methods. Encyclopedia of Environmetrics, 3, 1370-1383.

      [35] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 2895-2907.

      [36] World Health Organization (WHO). (2004). Guidelines for drinking-water quality: Recommendations. WHO.

      [37] Bielmeier, S. R., Best, D. S., Guidici, D. L., & Narotsky, M. G. (2001). Pregnancy loss in the rat caused by bromodichloromethane. Toxicological Sciences, 59(2), 309-315.

      [38] Smith, I. C., & Carson, B. L. (1977). Trace metals in the environment. http://agris.fao.org/agris-search/search.do?recordID=US7897448.

      [39] Slooff, W., Cleven, R. F. M. J., Janus, J. A., & Ros, J. P. M. (1989). Integrated criteria document copper. Institute of Public Health and Environmental Protection.

      [40] Reisman, D. J., Peirano, W. B., Lewis, J. B., Basu, D. K., & Hohrseiter, D. (1987). Summary review of the health effects associated with copper: Health issue assessment (No. PB-87-137733/XAB; EPA-600/8-87/001). Environmental Protection Agency, Office of Environmental Criteria and Assessment.

      [41] Fourth Edition. (2011). Guidelines for drinking-water quality. WHO Chronicle, 38(4), 104-108.

      [42] Agency for Toxic Substances and Disease Registry (ATSDR). (1990). Toxicological profile for silver. US Department of Health and Human Services, Public Health Service, ATSDR (TP-90-24).

      [43] Habir, N. L. A., Retnam, A., Kamaruddin, M. K., Umar, R., & Azid, A. (2016). Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine Pollution Bulletin, 106(1), 292-300.

      [44] University of Georfia. (2018). Drinking water: Sulfur (Sulfate and hydrogen sulfide). http://extensionpublications.unl.edu/assets/pdf/g1275.pdf.

      [45] Smith, I., & Carson, B. (1977). Trace metals in the environment. Ann Arbor Science Publishers.

      [46] University of Wisconsin. (2018). Mercury in the environment and water supply: Mercury in water and drinking water. https://people.uwec.edu/piercech/hg/mercury_water/drinkingwater.htm.

      [47] PubChem. (2018). Bromodichloromethane. https://pubchem.ncbi.nlm.nih.gov/compound/bromodichloromethane.

      [48] Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis. Prentice-Hall.

      [49] Johannessen, J. B. (1998). Coordination. Oxford University Press.

      [50] Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40(4), 744–752.

      [51] Nasir, M. F. M., Samsudin, M. S., Mohamad, I., Awaluddin, M. R. A., Mansor, M. A., Juahir, H., & Ramli, N. (2011). River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): A case study at Klang River, Malaysia. World Applied Sciences Journal, 14, 73-82.

      [52] National Research Council (U.S.). Committee on Biologic Effects of Atmospheric Pollutants. (1974). Chromium. National Academy of Sciences.

  • Downloads

  • How to Cite

    M. Zolkipli, H., Juahir, H., Adiana, G., Zainuddin, N., B.H.M. Maliki, A., Z. Mohamed, S., N.W. A. Halim, W., F. Sa’adon, N., S. Mohamed, N., & A.A. Hashim, N. (2018). Spatial Variation and Possible Sources Assessment at Federal Territory of Kuala Lumpur Water Treatment Plan Using Chemometric Technique. International Journal of Engineering & Technology, 7(4.34), 70-74. https://doi.org/10.14419/ijet.v7i4.34.23583