Dual Solutions in the Boundary Layer Flow and Heat Transfer in the Presence of Thermal Radiation with Suction Effect
DOI:
https://doi.org/10.14419/ijet.v7i4.33.23475Published:
2018-12-09Keywords:
Dual Solution, Similarity Transformation, Boundary Later Flow, Heat Transfer, Thermal Radiation.Abstract
The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The governing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and afterward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the respective solutions.
References
[1] Mat Yasin MH, Ishak A & Pop I (2016), MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. Journal of Magnetism and Magnetic Materials 407, 235-240.
[2] Azeman SNA & Ishak A (2012), Heat transfer in thermal boundary layer flow over a stretching plate with radiation effect. Proceedings of the IEEE Business, Engineering and Industrial Applications Colloquium, pp. 420-424.
[3] Merkin JH & Pop I (2011), The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition. Commun. Nonlinear Sci. Numerical Simul 16, 3602-3609.
[4] Shateyi S & Mabood F (2015), MHD mixed convection slip flow near a stagnation-point on a nonlinearly vertical stretching sheet in the presence of viscous dissipation. Thermal Science 21(6B), 2731-2745.
[5] Merkin JH (1994), Natural - convection boundary - layer flow on a vertical surface with Newtonian heating. International Journal of Heat and Fluid Flow 15(5), 392-398.
[6] Lin C, Kao MJ, Tzeng GW, Wong WY, Yang J, Raikar RV & Liu P LF (2015), Study on flow fields of boundary-layer separation and hydraulic jump during rundown motion of shoaling solitary wave. Journal of Earthquake and Tsunami 9(5), 1-33.
[7] Makinde OD & Olanrewaju PO (2010), Buoyancy effects on the thermal boundary layer over a vertical flat plate with a convective surface boundary conditions. ASME Fluid Eng 132, 1-4.
[8] Merkin JH & Mahmood T (1989), Mixed convection boundary layer similarity solutions: Prescribed wall heat flux. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 40(1), 51–68.
[9] Ishak A, Nazar R, & Pop I (2008), Dual solutions in mixed convection flow near stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer 51(5–6), 1150–1155.
[10] Sharma R, Ishak A & Pop I (2017), Dual solution of Unsteady separated stagnation-point flow in a nanofluid with suction: A finite element analysis. Indian Journal of Pure and Applied Physics 55(4), 275-283.
[11] Jusoh R, Nazar R & Pop I (2017), Dual solutions of MHD three-dimensional flow over a permeable stretching/shrinking surface with velocity slip and thermal radiation in a nanofluid. Journal of Computational and Theoretical Nanoscience 14(3), 1644-1652.
[12] Roşca AV, Roşca NC & Pop I (2014), Note on dual solutions for the mixed convection boundary layer flow close to the lower stagnation point of a horizontal circular cylinder: Case of constant surface heat flux. Sains Malaysiana 43(8), 1239–1247.
[13] Kimura S & Bejan A (1983), The heatline visualization of convective heat transfer. Journal of Heat Transfer 105, 916-919.
[14] Lioua KHF, Oztop HF, Borjini MN & Al-Salem K (2011), Second law analysis in a three dimensional lid-driven cavity. Int. Commun. in Heat and Mass Transfer 38, 1376-1383.
[15] Basak T, Pradeep TPV & Roy S (2011), A complete heatline analysis on visualization of heat flow and thermal mixing during mixed convection in a square cavity with various wall heating. Industrial and Engineering Chemical Research 50, 7608-7630.
[16] Ishak A (2014), Dual solutions in mixed convection boundary layer flow: A stability analysis. International Journal of Mathematical, Computational, Physical and Quantum Engineering 8(9), 1131–1134.
[17] Cao L, Si X, Zhen L & Pang H (2015), Lie group analysis for MHD effects on the convectively heated stretching porous surface with the heat source/sink. Boundary Value Problems 2015(1), 1-18.
[18] Chaudhary MA, Merkin JH (1993), The effect of blowing and suction on free convection boundary layers on vertical surfaces with prescribed heat flux. J. Engng. Math 27, 265-292.
[19] Ishak A (2014), Dual solutions in mixed convection boundary layer flow: A stability analysis. International Journal of Mathematical, Computational, Physical and Quantum Engineering 8(9), 1131–1134.