Nanofluids Used in Photovoltaic Thermal (PV/T) Systems: a Review
 Abstract
 Keywords
 References

Abstract
Solar energy has attracted increasing research attention, particularly to improve and develop new smallsized devices with high energy efficiency or to establish appropriate techniques to produce such devices. These materials should be effectively utilised to enhance solar energy system performance. Nanofluids exhibit potential for heat transfer and absorption. This paper reviews studies on nanofluids used in solar energy systems, specifically photovoltaic thermal (PV/T) systems. The implementation of solar collector and PV/T system variables without or with nanofluids is also discussed. This paper is divided into two sections. The first part reports theoretical and experimental outcomes of analyses on thermal conductivity, density, specific heat and heat transfer coefficientof nanofluids. Thermophysical characteristics of nanofluids have been widely investigated to study the influence of these materials on the performance of solar collector and PV/T systems. The second part discusses nanofluid applications in photovoltaic thermal PV/T solar systems and solar collector. Nanofluids can be utilised to improve the performance of different solar thermal systems, particularly photovoltaic thermal systems, and thus increase the overall solar energy yield.

Keywords
Solar Energy;Nanofluids; PV/T Systems

References
[1] M. Corcione, “Heat transfer features of buoyancydriven nano fl uids inside rectangular enclosures differentially heated at the sidewalls,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1536–1546, 2010.
[2] W. Yu and H. Xie, “A Review on Nanofluids: Preparation, StabilityMechanisms, and Applications,” J. Nanomater., vol. Volume 201.
[3] A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renew. Sustain. Energy Rev., vol. 41, pp. 658–684, 2015.
[4] V. V Tyagi, S. C. Kaushik, and S. K. Tyagi, “Advancement in solar photovoltaic / thermal ( PV / T ) hybrid collector technology,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1383–1398, 2012.
[5] M. Gupta, N. Arora, R. Kumar, S. Kumar, and N. Dilbaghi, “A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids,” pp. 1–21, 2014.
[6] W. Duangthongsuk and S. Wongwises, “Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1320–1326, 2008.
[7] H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate,” J. Cryst. Growth, vol. 45, no. C, pp. 495–500, 1978.
[8] M. Wagener, B. S. Murty, and B. Gunther, “Magnetro Rotating Drum,” vol. 457, pp. 149–154, 1997.
[9] C.H. LO, T.T. TSUNG, and L.C. CHEN, “Ni NanoMagnetic Fluid Prepared by Submerged Arc Nano Synthesis System (SANSS),” JSME Int. J. Ser. B, vol. 48, no. 4, pp. 750–755, 2005.
[10] S. M. S. Murshed and C. A. Nieto De Castro, “Superior thermal features of carbon nanotubesbased nanofluids  A review,” Renew. Sustain. Energy Rev., vol. 37, pp. 155–167, 2014.
[11] Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009.
[12] J.H. Lee, S.H. Lee, C. J. Choi, S. P. Jang, and S. U. S. Choi, “A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids,” Int. J. MicroNano Scale Transp., vol. 1, no. 4, pp. 269–322, 2011.
[13] V. Kumaresan and R. Velraj, “Experimental investigation of the thermophysical properties of waterethylene glycol mixture based CNT nanofluids,” Thermochim. Acta, vol. 545, pp. 180–186, 2012.
[14] B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf., vol. 11, no. 2, pp. 151–170, 1998.
[15] R. S. Vajjha, D. K. Das, and B. M. Mahagaonkar, “Density measurement of different nanofluids and their comparison with theory,” Pet. Sci. Technol., vol. 27, no. 6, pp. 612–624, 2009.
[16] L. S. Sundar, S. Ramanathan, K. V. Sharma, and P. S. Babu., “Temperature dependent flow characteristics of Al2O3 nanofluid,” Int. J. Nanotechnol. Appl., vol. 2, no. 1, pp. 35–44, 2007.
[17] Harkirat and D. Gangacharyulu, “Preparationg and characterization of nanofluids and some investigation in biological applications,” Mech. Eng. Carbondale South. Illinois Univ., no. June, 2010.
[18] Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000.
[19] I. C. Nelson, D. Banerjee, and R. Ponnappan, “Flow Loop Experiments Using Polyalphaolefin Nanofluids,” J. Thermophys. Heat Transf., vol. 23, no. 4, pp. 752–761, 2009.
[20] B. X. Wang, L. P. Zhou, X. F. Peng, X. Z. Du, and Y. P. Yang, “On the specific heat capacity of CuO nanofluid,” Adv. Mech. Eng., vol. 2010, 2010.
[21] R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transf., vol. 52, no. 21–22, pp. 4675–4682, 2009.
[22] G. Ramesh and N. K. Prabhu, “Review of thermophysical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment,” Nanoscale Res. Lett., vol. 6, no. 1, p. 334, 2011.
[23] M. Jahanshahi, S. F. Hosseinizadeh, M. Alipanah, A. Dehghani, and G. R. Vakilinejad, “Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2nanofluid,” Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 687–694, 2010.
[24] G. Paul, T. Pal, and I. Manna, “Thermophysical property measurement of nanogold dispersed water based nanofluids prepared by chemical precipitation technique,” J. Colloid Interface Sci., vol. 349, no. 1, pp. 434–437, 2010.
[25] W. Yu, H. Xie, L. Chen, and Y. Li, “Investigation on the thermal transport properties of ethylene glycolbased nanofluids containing copper nanoparticles,” Powder Technol., vol. 197, no. 3, pp. 218–221, 2010.
[26] S. Habibzadeh, A. KazemiBeydokhti, A. A. Khodadadi, Y. Mortazavi, S. Omanovic, and M. ShariatNiassar, “Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwaveinduced combustion route,” Chem. Eng. J., vol. 156, no. 2, pp. 471–478, 2010.
[27] K. S. Hwang, S. P. Jang, and S. U. S. Choi, “Flow and convective heat transfer characteristics of waterbased Al2O3nanofluids in fully developed laminar flow regime,” Int. J. Heat Mass Transf., vol. 52, no. 1–2, pp. 193–199, 2009.
[28] B. C. Lamas et al., “EG/CNTs Nanofluids Engineering and ThermoRheological Characterization,” J. Nano Res., vol. 13, pp. 69–74, 2011.
[29] M. Chopkar, P. K. Das, and I. Manna, “Synthesis and characterization of nanofluid for advanced heat transfer applications,” Scr. Mater., vol. 55, no. 6, pp. 549–552, 2006.
[30] W. Yu, H. Xie, L. Chen, and Y. Li, “Enhancement of thermal conductivity of kerosenebased Fe3O4nanofluids prepared via phasetransfer method,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 355, no. 1–3, pp. 109–113, 2010.
[31] T. X. Phuoc, M. Massoudi, and R. H. Chen, “Viscosity and thermal conductivity of nanofluids containing multiwalled carbon nanotubes stabilized by chitosan,” Int. J. Therm. Sci., vol. 50, no. 1, pp. 12–18, 2011.
[32] J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol.II, vol. I. 1881.
[33] R. L. Hamilton, “Thermal conductivity of heterogeneous twocomponent systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962.
[34] S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 13–14, pp. 3187–3196, 2009.
[35] W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanoﬂuids: A renovated Maxwell model,” J. Nanoparticle Res., vol. 5, no. 1–2, pp. 167–171, 2003.
[36] P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan, and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” J. Appl. Phys., vol. 95, no. 11 I, pp. 6492–6494, 2004.
[37] Q. Z. Xue, “Model for thermal conductivity of carbon nanotubebased composites,” Phys. B Condens. Matter, vol. 368, no. 1–4, pp. 302–307, 2005.
[38] K. C. Leong, C. Yang, and S. M. S. Murshed, “A model for the thermal conductivity of nanofluids – the effect of interfacial layer,” J. Nanoparticle Res., vol. 8, no. 2, pp. 245–254, 2006.
[39] S. M. S. Murshed, K. C. Leong, and C. Yang, “Investigations of thermal conductivity and viscosity of nanofluids,” Int. J. Therm. Sci., vol. 47, no. 5, pp. 560–568, 2008.
[40] L. M. Schwartz, E. J. Garboczi, and D. P. Bentz, “Interfacial transport in porous media: Application to dc electrical conductivity of mortars,” J. Appl. Phys., vol. 78, no. 10, pp. 5898–5908, 1995.
[41] Y. Xuan and Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids,” J. Heat Transfer, vol. 125, no. 1, p. 151, 2003.
[42] D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf., vol. 47, no. 24, pp. 5181–5188, 2004.
[43] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2nanoparticles (nanofluids) flowing upward through a vertical pipe,” Int. J. Heat Mass Transf., vol. 50, no. 11–12, pp. 2272–2281, 2007.
[44] H. Chen et al., “Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids),” Powder Technol., vol. 183, no. 1, pp. 63–72, 2008.
[45] K. B. Anoop, S. Kabelac, T. Sundararajan, and S. K. Das, “Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration,” J. Appl. Phys., vol. 106, no. 3, 2009.
[46] A. Amrollahi, A. M. Rashidi, and M. E. Meibodi, “Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region,” Proc.  2010 8th Int. Vac. Electron Sources Conf. Nanocarbon, IVESC 2010 NANOcarbon 2010, vol. 37, pp. 439–440, 2010.
[47] M. K. Moraveji, M. Darabi, S. M. H. Haddad, and R. Davarnejad, “Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics,” Int. Commun. Heat Mass Transf., vol. 38, no. 9, pp. 1291–1295, 2011.
[48] M. M. Heyhat, F. Kowsary, A. M. Rashidi, M. H. Momenpour, and A. Amrollahi, “Experimental investigation of laminar convective heat transfer and pressure drop of waterbased Al2O3nanofluids in fully developed flow regime,” Exp. Therm. Fluid Sci., vol. 44, pp. 483–489, 2013.
[49] E. Esmaeilzadeh, H. Almohammadi, S. Nasiri Vatan, and A. N. Omrani, “Experimental investigation of hydrodynamics and heat transfer characteristics of γAl2O3/water under laminar flow inside a horizontal tube,” Int. J. Therm. Sci., vol. 63, pp. 31–37, 2013.
[50] B. Abreu, B. Lamas, A. Fonseca, N. Martins, and M. S. A. Oliveira, “Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions,” Heat Mass Transf. und Stoffuebertragung, vol. 50, no. 1, pp. 65–74, 2013.
[51] L. I. Qiang and X. Yimin, “Convective heat transfer and flow characteristics of Cuwater nanofluid,” Science (80. )., vol. 45, no. 4, p. 2002, 2002.
[52] Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, and G. Wu, “Heat transfer properties of nanoparticleinfluid dispersions (nanofluids) in laminar flow,” Int. J. Heat Mass Transf., vol. 48, no. 6, pp. 1107–1116, 2005.
[53] U. Rea, T. McKrell, L. wen Hu, and J. Buongiorno, “Laminar convective heat transfer and viscous pressure loss of aluminawater and zirconiawater nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 7–8, pp. 2042–2048, 2009.
[54] P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, “Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 290–302, 2009.
[55] W. Duangthongsuk and S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2water nanofluids flowing under a turbulent flow regime,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 334–344, 2010.
[56] S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3Cu/water hybrid nanofluid in heat transfer,” Exp. Therm. Fluid Sci., vol. 38, pp. 54–60, 2012.
[57] A. N. AlShamani, M. A. Alghoul, A. M. Elbreki, A. A. Ammar, A. M. Abed, and K. Sopian, “Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nanofluids,” Energy, vol. 145, pp. 770–792, 2018.
[58] A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev., vol. 43, pp. 584–598, 2015.
[59] K. Khanafer and K. Vafai, “A review on the applications of nanofluids in solar energy field,” Renew. Energy, 2018.
[60] A. Mathur, G. D. Agrawal, and M. Chandel, “RECENT DEVELOPMENTS IN THE FIELD OF SOLAR WATER HEATER USING FLAT PLATE COLLECTOR A REVIEW Address for Correspondence,” Int. J. Adv. Eng. Technol., pp. 12–14, 2012.
[61] M.A.M. Rosli, S. Mat, M. K. Anuar, K. Sopian, M. Y. Sulaiman, and S. Ellias, “Progress on FlatPlate Water Based of Photovoltaic Thermal (PV/T) System: A Review,” Iran. J. Energy Environ. 5 407418, 2014.
[62] S. M. Ladjevardi, A. Asnaghi, P. S. Izadkhast, and A. H. Kashani, “Applicability of graphite nanofluids in direct solar energy absorption,” Sol. Energy, vol. 94, pp. 327–334, 2013.
[63] R. A. Taylor et al., “Applicability of nanofluids in high flux solar collectors,” J. Renew. Sustain. Energy, vol. 3, no. 2, 2011.
[64] H. Tyagi, P. Phelan, and R. Prasher, “Predicted Efficiency of a LowTemperature Nanofluid Based Direct Absorption Solar Collector,” J. Sol. Energy Eng., vol. 131, no. November 2009, pp. 1–7.
[65] T. Otanicar and R. S. Prasher, “NanofluidBased Direct Absorption Solar Collector,” J. Renew. Sustain. ENERGY, vol. 2, no. 3, 2010.
[66] R. Saidur, T. C. Meng, Z. Said, M. Hasanuzzaman, and A. Kamyar, “Evaluation of the effect of nanofluidbased absorbers on direct solar collector,” Int. J. Heat Mass Transf., vol. 55, no. 21–22, pp. 5899–5907, 2012.
[67] T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3H2O nanofluid on the efficiency of flatplate solar collectors,” vol. 39, pp. 293–298, 2012.
[68] T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of MWCNTH2O nanofluid on the efficiency of flatplate solar collectors,” Exp. Therm. Fluid Sci., vol. 39, pp. 207–212, 2012.
[69] M. T. JamalAbad, A. Zamzamian, E. Imani, and M. Mansouri, “Experimental Study of the Performance of a FlatPlate Collector Using Cu–Water Nanofluid,” J. Thermophys. Heat Transf., vol. 27, no. 4, pp. 756–760, 2013.
[70] L. Lu, Z. Liu, and H. Xiao, “Thermal performance of an open thermosyphon using nanofluids for hightemperature evacuated tubular solar collectors Part 1 : Indoor experiment,” Sol. Energy, vol. 85, no. 2, pp. 379–387, 2011.
[71] A. Menbari, A. A. Alemrajabi, and A. Rezaei, “Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector,” Appl. Therm. Eng., vol. 104, pp. 176–183, 2016.
[72] A. Kasaeian, S. Daviran, R. Danesh, and A. Rashidi, “Performance evaluation and nanofluid using capability study of a solar parabolic trough collector,” Energy Convers. Manag., vol. 89, pp. 368–375, 2015.
[73] W. Kang, Y. Shin, and H. Cho, “Economic Analysis of FlatPlate and UTube Solar Collectors Using an Al2O3 Nanofluid,” Energies, vol. 10, no. 12, p. 1911, 2017.
[74] T. B. Gorji and A. A. Ranjbar, “Thermal and exergy optimization of a nanofluidbased direct absorption solar collector,” Renew. Energy, vol. 106, pp. 274–287, 2017.
[75] W. S. Sarsam, S. N. Kazi, and A. Badarudin, “A review of studies on using nanofluids in flatplate solar collectors,” Sol. Energy, vol. 122, pp. 1245–1265, 2015.
[76] R. Nasrin, S. Parvin, and M. A. Alim, “Effect of Prandtl number on free convection in a solar collector filled with nanofluid,” Procedia Eng., vol. 56, pp. 54–62, 2013.
[77] R. Nasrin, M. A. Alim, and A. J. Chamkha, “Effects of Physical Parameters on Natural Convection in a Solar Collector Filled with Nanofluid,” Heat Transf. Res., vol. 42, no. 1, pp. 73–88, 2013.
[78] R. Nasrin and M. A. Alim, “Finite Element Simulation of Forced Convection in a Flat Plate Solar Collector: Influence of Nanofluid with Double Nanoparticles,” J. Appl. Fluid Mech., vol. 7, no. 3, pp. 543–556, 2014.
[79] M. Shahi, A. Houshang, and F. Talebi, “Numerical simulation of steady natural convection heat transfer in a 3dimensional singleended tube subjected to a nano fluid,” Int. Commun. Heat Mass Transf., vol. 37, no. 10, pp. 1535–1545, 2010.
[80] [80] E. A. Tora and T. Moustafa, “Numerical Simulation of an Al 2 O 3 H 2 O Nanofluid as a Heat Transfer Agent for a FlatPlate Solar Collector,” Int. J. Sci. Eng. Res., vol. 4, no. 5, pp. 762–773, 2013.
[81] S. Abdul Hamid, M. Yusof Othman, K. Sopian, and S. H. Zaidi, “An overview of photovoltaic thermal combination (PV/T combi) technology,” Renew. Sustain. Energy Rev., vol. 38, pp. 212–222, 2014.
[82] A. H. Besheer, M. Smyth, A. Zacharopoulos, J. Mondol, and A. Pugsley, “Review on recent approaches for hybrid PV / T solar technology,” Int. J. ENERGY Res., 2016.
[83] R. Zakharchenko et al., “Photovoltaic solar panel for a hybrid PV/thermal system,” Sol. Energy Mater. Sol. Cells, vol. 82, no. 1–2, pp. 253–261, 2004.
[84] R. Daghigh, A. Ibrahim, G. L. Jin, M. H. Ruslan, and K. Sopian, “Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors,” Energy Convers. Manag., vol. 52, no. 3, pp. 1741–1747, 2011.
[85] A. Ibrahim et al., “Performance of Photovoltaic Thermal Collector ( PVT ) With Different Absorbers Design,” WSEAS Trans. Environ. Dev., vol. 5, no. 3, pp. 321–330, 2009.
[86] K. Touafek, A. Khelifa, M. Adouane, E. H. Khettaf, and A. Embarek, “Experimental Study on a New Conception of Hybrid PV / T Collector,” in 14th international conference on Sciences and Techniques of Automatic control & computer engineering  STA’2013, Sousse, Tunisia, December 2022, 2013 STA’2013PID3271REC Experimenta, 2013, pp. 140–145.
[87] Z. Xu and C. Kleinstreuer, “Concentration photovoltaicthermal energy cogeneration system using nanofluids for cooling and heating,” Energy Convers. Manag., vol. 87, pp. 504–512, 2014.
[88] M. N. Abu Bakar, M. Othman, M. Hj Din, N. A. Manaf, and H. Jarimi, “Design concept and mathematical model of a bifluid photovoltaic/thermal (PV/T) solar collector,” Renew. Energy, vol. 67, pp. 153–164, 2014.
[89] M. Sardarabadi, M. Passandidehfard, and S. Zeinali, “Experimental investigation of the effects of silica / water nano fluid on PV / T ( photovoltaic thermal units ),” Energy, vol. 66, pp. 264–272, 2014.
[90] A. Ibrahim, M. Y. Othman, M. H. Ruslan, S. Mat, and K. Sopian, “Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 352–365, 2011.
[91] M. Elmir, R. Mehdaoui, and A. Mojtabi, “Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid,” Energy Procedia, vol. 18, pp. 594–603, 2012.
[92] D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV /T system,” Sol. ENERGY, vol. 112, pp. 30–40, 2015.
[93] S. Bhattarai, J. H. Oh, S. H. Euh, G. Krishna Kafle, and D. Hyun Kim, “Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states,” Sol. Energy Mater. Sol. Cells, vol. 103, pp. 184–193, 2012.
[94] W. He, J. Zhou, C. Chen, and J. Ji, “Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes,” Energy Convers. Manag., vol. 84, pp. 41–49, 2014.
[95] A. H. A. AlWaeli, K. Sopian, M. T. Chaichan, H. A. Kazem, H. A. Hasan, and A. N. AlShamani, “An experimental investigation of SiC nanofluid as a basefluid for a photovoltaic thermal PV/T system,” Energy Convers. Manag., vol. 142, pp. 547–558, 2017.
[96] R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluidbased optical filter optimization for PV/T systems,” Light Sci. Appl., vol. 1, no. OCTOBER, pp. 1–7, 2012.
[97] S. Hassani, R. A. Taylor, S. Mekhilef, and R. Saidur, “A cascade nanofluidbased PV/T system with optimized optical and thermal properties,” Energy, vol. 112, pp. 963–975, 2016.
[98] F. Crisostomo, J. Becker, S. Mesgari, N. Hjerrild, and R. A. Taylor, “Desing and onsun testing of a hybrid PVT prototype using a nanofluidbased selective absorption filter,” Int. Conf. Eur. Energy Mark. EEM, vol. 2015–Augus, pp. 2–6, 2015.
[99] M. Moradgholi, S. Mostafa Nowee, and A. Farzaneh, “Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system,” Sol. Energy, vol. 164, no. March, pp. 243–250, 2018.
[100] R. Gangadevi, B. K. Vinayagam, and S. Senthilraja, “Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al 2 O 3 /water nanofluid,” IOP Conf. Ser. Mater. Sci. Eng., vol. 197, p. 12041, 2017.
[101] H. A. Hussein, A. H. Numan, and R. A. Abdulrahman, “Improving the Hybrid Photovoltaic / Thermal System Performance Using WaterCooling Technique and ZnH2O Nanofluid,” vol. 2017, no. 3, 2017.
[102] M. Hosseinzadeh, A. Salari, M. Sardarabadi, and M. PassandidehFard, “Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation,” Energy Convers. Manag., vol. 160, no. October 2017, pp. 93–108, 2018.
[103] M. Sardarabadi, M. Passandidehfard, M. Maghrebi, and M. Ghazikhani, “Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems,” Sol. Energy Mater. Sol. Cells, vol. 161, no. November 2016, pp. 62–69, 2017.
[104] M. Sardarabadi, M. Hosseinzadeh, A. Kazemian, and M. PassandidehFard, “Experimental investigation of the effects of using metaloxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints,” Energy, vol. 138, pp. 682–695, 2017.
[105] [M. Sardarabadi and M. PassandidehFard, “Experimental and numerical study of metaloxides/water nanofluids as coolant in photovoltaic thermal systems (PVT),” Sol. Energy Mater. Sol. Cells, vol. 157, pp. 533–542, 2016.
[106] A. N. AlShamani, K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan, “Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions,” Energy Convers. Manag., vol. 124, pp. 528–542, 2016.
[107] A. N. AlShamani, K. Sopian, S. Mat, and A. M. Abed, “Performance enhancement of photovoltaic gridconnected system using PVT panels with nanofluid,” Sol. Energy, vol. 150, pp. 38–48, 2017.
[108] O. Rejeb, M. Sardarabadi, C. Ménézo, M. PassandidehFard, M. H. Dhaou, and A. Jemni, “Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system,” Energy Convers. Manag., vol. 110, pp. 367–377, 2016.
[109] H. A. Hasan, K. Sopian, A. H. Jaaz, and A. N. AlShamani, “Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector,” Sol. Energy, vol. 144, pp. 321–334, 2017.
[110] A. Younis, M. Onsa, Y. Alhorr, and E. Elsarrag, “The Influence of Al 2 O 3  ZnOH 2 O Nanofluid on the Thermodynamic Performance of Photovoltaic Thermal Hybrid Solar Collector System,” Innivative Energy Res., vol. 7, no. 1, pp. 1–8, 2018.
[111] Y. Cui and Q. Zhu, “Study of photovoltaic/thermal systems with MgOwater nanofluids flowing over silicon solar cells,” AsiaPacific Power Energy Eng. Conf. APPEEC, pp. 0–3, 2012.
[112] J. J. Michael and S. Iniyan, “Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide  water nanofluid,” Sol. Energy, vol. 119, pp. 439–451, 2015.
[113] M. Ghadiri, M. Sardarabadi, M. PasandidehFard, and A. J. Moghadam, “Experimental investigation of a PVT system performance using nano ferrofluids,” Energy Convers. Manag., vol. 103, pp. 468–476, 2015.
[114] A. H. A. AlWaeli et al., “Evaluation of the nanofluid and nanoPCM based photovoltaic thermal (PVT) system: An experimental study,” Energy Convers. Manag., vol. 151, no. September, pp. 693–708, 2017.
[115] S. Aberoumand, S. Ghamari, and B. Shabani, “Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study,” Sol. Energy, vol. 165, no. January, pp. 167–177, 2018.
[116] S. Bhattarai, G. K. Kafle, S. H. Euh, J. H. Oh, and D. H. Kim, “Comparative study of photovoltaic and thermal solar systems with different storage capacities: Performance evaluation and economic analysis,” Energy, vol. 61, pp. 272–282, 2013.
[117] T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol., vol. 43, no. 15, pp. 6082–6087, 2009.
[118] M. Faizal, R. Saidur, S. Mekhilef, and M. A. Alim, “Energy, economic and environmental analysis of metal oxides nanofluid for flatplate solar collector,” Energy Convers. Manag., vol. 76, pp. 162–168, 2013.
[119] R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett., vol. 6, no. 1, p. 225, 2011.

View 
Download  Article ID: 22950 
